Search results
Results From The WOW.Com Content Network
Electronegativity is not a uniquely defined property and may depend on the definition. The suggested values are all taken from WebElements as a consistent set. Many of the highly radioactive elements have values that must be predictions or extrapolations, but are unfortunately not marked as such.
However there are numerous exceptions; for example the lightest exception is chromium, which would be predicted to have the configuration 1s 2 2s 2 2p 6 3s 2 3p 6 3d 4 4s 2, written as [Ar] 3d 4 4s 2, but whose actual configuration given in the table below is [Ar] 3d 5 4s 1.
Fluorine's chemistry is dominated by its strong tendency to gain an electron. It is the most electronegative element and elemental fluorine is a strong oxidant. The removal of an electron from a fluorine atom requires so much energy that no known reagents are known to oxidize fluorine to any positive oxidation state. [20]
Hydrogen and fluorine combine to yield hydrogen fluoride, in which discrete molecules form clusters by hydrogen bonding, resembling water more than hydrogen chloride. [ 126 ] [ 127 ] [ 128 ] It boils at a much higher temperature than heavier hydrogen halides and unlike them is miscible with water. [ 129 ]
It is to be expected that the electronegativity of an element will vary with its chemical environment, [7] but it is usually considered to be a transferable property, that is to say that similar values will be valid in a variety of situations. Caesium is the least electronegative element (0.79); fluorine is the most (3.98).
In hydrogen fluoride (HF), the hydrogen 1s orbital can mix with fluorine 2p z orbital to form a sigma bond because experimentally the energy of 1s of hydrogen is comparable with 2p of fluorine. The HF electron configuration 1σ 2 2σ 2 3σ 2 1π 4 reflects that the other electrons remain in three lone pairs and that the bond order is 1. The ...
Because carbon is more electronegative than hydrogen, the electron density in a C-H bond will be shortened and the C-F bond will be elongated. The same trend also holds for the chlorinated analogs of methane, although the effect is less dramatic because chlorine is less electronegative than fluorine. [2]
Their formulae are generally XY n, where n = 1, 3, 5 or 7, and X is the less electronegative of the two halogens. The value of n in interhalogens is always odd, because of the odd valence of halogens. They are all prone to hydrolysis, and ionize to give rise to polyhalogen ions. Those formed with astatine have a very short half-life due to ...