Search results
Results From The WOW.Com Content Network
In gravitationally bound systems, the orbital speed of an astronomical body or object (e.g. planet, moon, artificial satellite, spacecraft, or star) is the speed at which it orbits around either the barycenter (the combined center of mass) or, if one body is much more massive than the other bodies of the system combined, its speed relative to the center of mass of the most massive body.
A wide variety of sources [5] [6] [7] define LEO in terms of altitude.The altitude of an object in an elliptic orbit can vary significantly along the orbit. Even for circular orbits, the altitude above ground can vary by as much as 30 km (19 mi) (especially for polar orbits) due to the oblateness of Earth's spheroid figure and local topography.
The energy required to reach Earth orbital velocity at an altitude of 600 km (370 mi) is about 36 MJ/kg, which is six times the energy needed merely to climb to the corresponding altitude. [ 4 ] Spacecraft with a perigee below about 2,000 km (1,200 mi) are subject to drag from the Earth's atmosphere, [ 5 ] which decreases the orbital altitude.
the kinetic energy of the system is equal to the absolute value of the total energy; the potential energy of the system is equal to twice the total energy; The escape velocity from any distance is √ 2 times the speed in a circular orbit at that distance: the kinetic energy is twice as much, hence the total energy is zero. [citation needed]
Orbital velocity may refer to the following: The orbital angular velocity; The orbital speed of a revolving body in a gravitational field. The velocity of particles due to wave motion, such as those in wind waves; The equivalent velocity of a bound electron needed to produce its orbital kinetic energy
To escape the Solar System from a location at a distance from the Sun equal to the distance Sun–Earth, but not close to the Earth, requires around 42 km/s velocity, but there will be "partial credit" for the Earth's orbital velocity for spacecraft launched from Earth, if their further acceleration (due to the propulsion system) carries them ...
Orbital position vector, orbital velocity vector, other orbital elements. In astrodynamics and celestial dynamics, the orbital state vectors (sometimes state vectors) of an orbit are Cartesian vectors of position and velocity that together with their time () uniquely determine the trajectory of the orbiting body in space.
1 km/h. 0.44704: 1.609344: 1: 1.4912 × 10 ... 320 km/h or 200 mph is a parameter sometimes used in defining a supercar. ... Mean orbital velocity of the Moon around ...