When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Logit - Wikipedia

    en.wikipedia.org/wiki/Logit

    If p is a probability, then p/(1 − p) is the corresponding odds; the logit of the probability is the logarithm of the odds, i.e.: ⁡ = ⁡ = ⁡ ⁡ = ⁡ = ⁡ (). The base of the logarithm function used is of little importance in the present article, as long as it is greater than 1, but the natural logarithm with base e is the one most often used.

  3. Log probability - Wikipedia

    en.wikipedia.org/wiki/Log_probability

    (The conversion to log form is expensive, but is only incurred once.) Multiplication arises from calculating the probability that multiple independent events occur: the probability that all independent events of interest occur is the product of all these events' probabilities. Accuracy.

  4. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    The curve shows the estimated probability of passing an exam (binary dependent variable) versus hours studying (scalar independent variable). See § Example for worked details. In statistics, the logistic model (or logit model) is a statistical model that models the log-odds of an event as a linear combination of one or more independent variables.

  5. Multinomial logistic regression - Wikipedia

    en.wikipedia.org/wiki/Multinomial_logistic...

    In particular, in the multinomial logit model, the score can directly be converted to a probability value, indicating the probability of observation i choosing outcome k given the measured characteristics of the observation. This provides a principled way of incorporating the prediction of a particular multinomial logit model into a larger ...

  6. Logistic distribution - Wikipedia

    en.wikipedia.org/wiki/Logistic_distribution

    In probability theory and statistics, the logistic distribution is a continuous probability distribution. Its cumulative distribution function is the logistic function, which appears in logistic regression and feedforward neural networks. It resembles the normal distribution in shape but has heavier tails (higher kurtosis).

  7. Logistic function - Wikipedia

    en.wikipedia.org/wiki/Logistic_function

    The standard logistic function is the logistic function with parameters =, =, =, which yields = + = + = / / + /.In practice, due to the nature of the exponential function, it is often sufficient to compute the standard logistic function for over a small range of real numbers, such as a range contained in [−6, +6], as it quickly converges very close to its saturation values of 0 and 1.

  8. Softmax function - Wikipedia

    en.wikipedia.org/wiki/Softmax_function

    A second kind of remedies is based on approximating the softmax (during training) with modified loss functions that avoid the calculation of the full normalization factor. [9] These include methods that restrict the normalization sum to a sample of outcomes (e.g. Importance Sampling, Target Sampling).

  9. Logit-normal distribution - Wikipedia

    en.wikipedia.org/wiki/Logit-normal_distribution

    In probability theory, a logit-normal distribution is a probability distribution of a random variable whose logit has a normal distribution.If Y is a random variable with a normal distribution, and t is the standard logistic function, then X = t(Y) has a logit-normal distribution; likewise, if X is logit-normally distributed, then Y = logit(X)= log (X/(1-X)) is normally distributed.