When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Mohr's circle - Wikipedia

    en.wikipedia.org/wiki/Mohr's_circle

    To overcome the "issue" of having the shear stress axis downward in the Mohr-circle space, there is an alternative sign convention where positive shear stresses are assumed to rotate the material element in the clockwise direction and negative shear stresses are assumed to rotate the material element in the counterclockwise direction (Figure 5 ...

  3. Torsion (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Torsion_(mechanics)

    Torsion of a square section bar Example of torsion mechanics. In the field of solid mechanics, torsion is the twisting of an object due to an applied torque [1] [2].Torsion could be defined as strain [3] [4] or angular deformation [5], and is measured by the angle a chosen section is rotated from its equilibrium position [6].

  4. Mohr–Coulomb theory - Wikipedia

    en.wikipedia.org/wiki/Mohr–Coulomb_theory

    Mohr–Coulomb theory is a mathematical model (see yield surface) describing the response of brittle materials such as concrete, or rubble piles, to shear stress as well as normal stress. Most of the classical engineering materials follow this rule in at least a portion of their shear failure envelope.

  5. Cauchy stress tensor - Wikipedia

    en.wikipedia.org/wiki/Cauchy_stress_tensor

    The maximum shear stress or maximum principal shear stress is equal to one-half the difference between the largest and smallest principal stresses, and acts on the plane that bisects the angle between the directions of the largest and smallest principal stresses, i.e. the plane of the maximum shear stress is oriented from the principal stress ...

  6. Stress–strain analysis - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_analysis

    Mohr's circle, Lame's stress ellipsoid (together with the stress director surface), and Cauchy's stress quadric are two-dimensional graphical representations of the state of stress at a point. They allow for the graphical determination of the magnitude of the stress tensor at a given point for all planes passing through that point.

  7. Yield surface - Wikipedia

    en.wikipedia.org/wiki/Yield_surface

    The formula reduces to the Tresca criterion if =. Figure 5 shows Mohr–Coulomb yield surface in the three-dimensional space of principal stresses. It is a conical prism and determines the inclination angle of conical surface. Figure 6 shows Mohr–Coulomb yield surface in two-dimensional stress space.

  8. Contact mechanics - Wikipedia

    en.wikipedia.org/wiki/Contact_mechanics

    It gives the contact stress as a function of the normal contact force, the radii of curvature of both bodies and the modulus of elasticity of both bodies. Hertzian contact stress forms the foundation for the equations for load bearing capabilities and fatigue life in bearings, gears, and any other bodies where two surfaces are in contact.

  9. Second polar moment of area - Wikipedia

    en.wikipedia.org/wiki/Second_polar_moment_of_area

    Simply put, the polar moment of area is a shaft or beam's resistance to being distorted by torsion, as a function of its shape. The rigidity comes from the object's cross-sectional area only, and does not depend on its material composition or shear modulus. The greater the magnitude of the second polar moment of area, the greater the torsional ...