When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Christoffel symbols - Wikipedia

    en.wikipedia.org/wiki/Christoffel_symbols

    The Einstein field equations—which determine the geometry of spacetime in the presence of matter—contain the Ricci tensor, and so calculating the Christoffel symbols is essential. Once the geometry is determined, the paths of particles and light beams are calculated by solving the geodesic equations in which the Christoffel symbols ...

  3. Spin connection - Wikipedia

    en.wikipedia.org/wiki/Spin_connection

    The torsion-free spin connection is given by = + = , where are the Christoffel symbols. This definition should be taken as defining the torsion-free spin connection, since, by convention, the Christoffel symbols are derived from the Levi-Civita connection , which is the unique metric compatible, torsion-free connection on a Riemannian Manifold.

  4. Geodesics in general relativity - Wikipedia

    en.wikipedia.org/wiki/Geodesics_in_general...

    These last three equations can be used as the starting point for the derivation of an equation of motion in General Relativity, instead of assuming that acceleration is zero in free fall. [2] Because the Minkowski tensor is involved here, it becomes necessary to introduce something called the metric tensor in General Relativity.

  5. List of formulas in Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    Christoffel symbols satisfy the symmetry relations = or, respectively, =, the second of which is equivalent to the torsion-freeness of the Levi-Civita connection. The contracting relations on the Christoffel symbols are given by

  6. Levi-Civita connection - Wikipedia

    en.wikipedia.org/wiki/Levi-Civita_connection

    The Levi-Civita connection is named after Tullio Levi-Civita, although originally "discovered" by Elwin Bruno Christoffel.Levi-Civita, [1] along with Gregorio Ricci-Curbastro, used Christoffel's symbols [2] to define the notion of parallel transport and explore the relationship of parallel transport with the curvature, thus developing the modern notion of holonomy.

  7. Lemaître coordinates - Wikipedia

    en.wikipedia.org/wiki/Lemaître_coordinates

    Lemaître coordinates are a particular set of coordinates for the Schwarzschild metric—a spherically symmetric solution to the Einstein field equations in vacuum—introduced by Georges Lemaître in 1932. [1] Changing from Schwarzschild to Lemaître coordinates removes the coordinate singularity at the Schwarzschild radius.

  8. Normal coordinates - Wikipedia

    en.wikipedia.org/wiki/Normal_coordinates

    In a normal coordinate system, the Christoffel symbols of the connection vanish at the point p, thus often simplifying local calculations. In normal coordinates associated to the Levi-Civita connection of a Riemannian manifold , one can additionally arrange that the metric tensor is the Kronecker delta at the point p , and that the first ...

  9. Fundamental theorem of Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    Here the proof is first given in the language of coordinates and Christoffel symbols, and then in the coordinate-free language of covariant derivatives. Regardless of the presentation, the idea is to use the metric-compatibility and torsion-freeness conditions to obtain a direct formula for any connection that is both metric-compatible and ...

  1. Related searches christoffel field equation example in real life like house no gamepass free

    christoffel field equationchristoffel symbols examples
    christoffel symbols in mathchristoffel symbols wikipedia