When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Cyclic quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Cyclic_quadrilateral

    This is a direct consequence of the inscribed angle theorem and the exterior angle theorem. There are no cyclic quadrilaterals with rational area and with unequal rational sides in either arithmetic or geometric progression. [26] If a cyclic quadrilateral has side lengths that form an arithmetic progression the quadrilateral is also ex-bicentric.

  3. Inscribed angle - Wikipedia

    en.wikipedia.org/wiki/Inscribed_angle

    As a consequence of the theorem, opposite angles of cyclic quadrilaterals sum to 180°; conversely, any quadrilateral for which this is true can be inscribed in a circle. As another example, the inscribed angle theorem is the basis for several theorems related to the power of a point with respect to a circle. Further, it allows one to prove ...

  4. Ptolemy's theorem - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_theorem

    Ptolemy's Theorem yields as a corollary a pretty theorem [2] regarding an equilateral triangle inscribed in a circle. Given An equilateral triangle inscribed on a circle and a point on the circle. The distance from the point to the most distant vertex of the triangle is the sum of the distances from the point to the two nearer vertices.

  5. Thales's theorem - Wikipedia

    en.wikipedia.org/wiki/Thales's_theorem

    In geometry, Thales's theorem states that if A, B, and C are distinct points on a circle where the line AC is a diameter, the angle ∠ ABC is a right angle. Thales's theorem is a special case of the inscribed angle theorem and is mentioned and proved as part of the 31st proposition in the third book of Euclid 's Elements . [ 1 ]

  6. Brahmagupta's formula - Wikipedia

    en.wikipedia.org/wiki/Brahmagupta's_formula

    In Euclidean geometry, Brahmagupta's formula, named after the 7th century Indian mathematician, is used to find the area of any convex cyclic quadrilateral (one that can be inscribed in a circle) given the lengths of the sides. Its generalized version, Bretschneider's formula, can be used with non-cyclic quadrilateral.

  7. Tangential quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Tangential_quadrilateral

    All triangles can have an incircle, but not all quadrilaterals do. An example of a quadrilateral that cannot be tangential is a non-square rectangle. The section characterizations below states what necessary and sufficient conditions a quadrilateral must satisfy to be able to have an incircle.

  8. List of theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems

    Bolyai–Gerwien theorem (discrete geometry) Bolzano's theorem (real analysis, calculus) Bolzano–Weierstrass theorem (real analysis, calculus) Bombieri's theorem (number theory) Bombieri–Friedlander–Iwaniec theorem (number theory) Bondareva–Shapley theorem ; Bondy's theorem (graph theory, combinatorics) Bondy–Chvátal theorem (graph ...

  9. Kite (geometry) - Wikipedia

    en.wikipedia.org/wiki/Kite_(geometry)

    If the sizes of an inscribed and a circumscribed circle are fixed, the right kite has the largest area of any quadrilateral trapped between them. [ 18 ] Among all quadrilaterals, the shape that has the greatest ratio of its perimeter to its diameter (maximum distance between any two points) is an equidiagonal kite with angles 60°, 75°, 150 ...