Search results
Results From The WOW.Com Content Network
For example, the four-vertex theorem was proved in 1912, but its converse was proved only in 1997. [3] In practice, when determining the converse of a mathematical theorem, aspects of the antecedent may be taken as establishing context. That is, the converse of "Given P, if Q then R" will be "Given P, if R then Q".
Using composition of relations, the converse may be composed with the original relation. For example, the subset relation composed with its converse is always the universal relation: ∀A ∀B ∅ ⊂ A ∩B ⇔ A ⊃ ∅ ⊂ B ⇔ A ⊃ ⊂ B. Similarly, For U = universe, A ∪ B ⊂ U ⇔ A ⊂ U ⊃ B ⇔ A ⊂ ⊃ B.
The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics. Additionally, the subsequent columns contains an informal explanation, a short example, the Unicode location, the name for use in HTML documents, [1] and the LaTeX symbol.
A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula. As formulas are entirely constituted with symbols of various types, many symbols are needed for ...
The expressions "A includes x" and "A contains x" are also used to mean set membership, although some authors use them to mean instead "x is a subset of A". [2] Logician George Boolos strongly urged that "contains" be used for membership only, and "includes" for the subset relation only. [3] For the relation ∈ , the converse relation ∈ T ...
The previous example employed the contrapositive of a definition to prove a theorem. One can also prove a theorem by proving the contrapositive of the theorem's statement. To prove that if a positive integer N is a non-square number , its square root is irrational , we can equivalently prove its contrapositive, that if a positive integer N has ...
To assume the value 0. For example, "The function sin(x) vanishes for those values of x that are integer multiples of π." This can also apply to limits: see Vanish at infinity. weak, weaker The converse of strong. well-defined Accurately and precisely described or specified.
In mathematics, a series is the sum of the terms of an infinite sequence of numbers. More precisely, an infinite sequence (,,, …) defines a series S that is denoted = + + + = =. The n th partial sum S n is the sum of the first n terms of the sequence; that is,