Search results
Results From The WOW.Com Content Network
Oxygen (chemical symbol O) has three naturally occurring isotopes: 16 O, 17 O, and 18 O, where the 16, 17 and 18 refer to the atomic mass.The most abundant is 16 O, with a small percentage of 18 O and an even smaller percentage of 17 O. Oxygen isotope analysis considers only the ratio of 18 O to 16 O present in a sample.
Measurements of 18 O/ 16 O ratio are often used to interpret changes in paleoclimate. Oxygen in Earth's air is 99.759% 16 O, 0.037% 17 O and 0.204% 18 O. [13] Water molecules with a lighter isotope are slightly more likely to evaporate and less likely to fall as precipitation, [14] so Earth's freshwater and polar ice have slightly less (0.1981% ...
Naturally occurring oxygen is composed of three stable isotopes, 16 O, 17 O, and 18 O, with 16 O being the most abundant (99.762% natural abundance). [ 60 ] Most 16 O is synthesized at the end of the helium fusion process in massive stars but some is made in the neon burning process .
Oxygen-16 (symbol: 16 O or 16 8 O) is a nuclide. It is a stable isotope of oxygen, with 8 neutrons and 8 protons in its nucleus, and when not ionized, 8 electrons orbiting the nucleus. Oxygen-16 has a mass of 15.994 914 619 56 u. It is the most abundant isotope of oxygen and accounts for 99.757% of oxygen's natural abundance. [2]
In the 1950s, Harold Urey performed an experiment in which he mixed both normal water and water with oxygen-18 in a barrel, and then partially froze the barrel's contents. The ratio 18 O / 16 O (δ 18 O) can also be used to determine paleothermometry in certain types of fossils. The fossils in question have to show progressive growth in the ...
In geochemistry, paleoclimatology and paleoceanography δ 18 O or delta-O-18 is a measure of the deviation in ratio of stable isotopes oxygen-18 (18 O) and oxygen-16 (16 O). It is commonly used as a measure of the temperature of precipitation, as a measure of groundwater/mineral interactions, and as an indicator of processes that show isotopic fractionation, like methanogenesis.
One useful isotope for reconstructing past climates is oxygen-18. It is another stable isotope of oxygen along with oxygen-16, and its incorporation into water and carbon dioxide/carbonate molecules is strongly temperature dependent. Higher temperature implies more incorporation of oxygen-18, and vice versa. Thus, the ratio of 18 O/ 16 O can ...
5-million-year history, representing the Lisiecki and Raymo (2005) LR04 Benthic Stack Sections of sedimentary cores from off Greenland. Marine isotope stages (MIS), marine oxygen-isotope stages, or oxygen isotope stages (OIS), are alternating warm and cool periods in the Earth's paleoclimate, deduced from oxygen isotope data derived from deep sea core samples.