Ad
related to: multiple regression analysis example problem based
Search results
Results From The WOW.Com Content Network
First, regression analysis is widely used for prediction and forecasting, where its use has substantial overlap with the field of machine learning. Second, in some situations regression analysis can be used to show causal relationships between the independent and dependent variables. Importantly, regressions by themselves only reveal ...
Certain types of problems involving multivariate data, for example simple linear regression and multiple regression, are not usually considered to be special cases of multivariate statistics because the analysis is dealt with by considering the (univariate) conditional distribution of a single outcome variable given the other variables.
In statistics, Bayesian multivariate linear regression is a Bayesian approach to multivariate linear regression, i.e. linear regression where the predicted outcome is a vector of correlated random variables rather than a single scalar random variable.
Both the "multilevel regression" and "poststratification" ideas of MRP can be generalized. Multilevel regression can be replaced by nonparametric regression [15] or regularized prediction, and poststratification can be generalized to allow for non-census variables, i.e. poststratification totals that are estimated rather than being known. [16]
Multinomial logistic regression is used when the dependent variable in question is nominal (equivalently categorical, meaning that it falls into any one of a set of categories that cannot be ordered in any meaningful way) and for which there are more than two categories. Some examples would be:
The general linear model or general multivariate regression model is a compact way of simultaneously writing several multiple linear regression models. In that sense it is not a separate statistical linear model. The various multiple linear regression models may be compactly written as [1]
In statistics, multivariate adaptive regression splines (MARS) is a form of regression analysis introduced by Jerome H. Friedman in 1991. [1] It is a non-parametric regression technique and can be seen as an extension of linear models that automatically models nonlinearities and interactions between variables.
Linear errors-in-variables models were studied first, probably because linear models were so widely used and they are easier than non-linear ones. Unlike standard least squares regression (OLS), extending errors in variables regression (EiV) from the simple to the multivariable case is not straightforward, unless one treats all variables in the same way i.e. assume equal reliability.