Search results
Results From The WOW.Com Content Network
By truncating this expansion (for example, retaining only the dipole terms, or only the dipole and quadrupole terms, or etc.), the results of the previous section are regained. In particular, truncating the expansion at the dipole term, the result is indistinguishable from the polarization density generated by a uniform dipole moment confined ...
A simple example of this system is a pair of charges of equal magnitude but opposite sign separated by some typically small distance. (A permanent electric dipole is called an electret.) A magnetic dipole is the closed circulation of an electric current system. A simple example is a single loop of wire with constant current through it.
The Hertzian dipole or elementary doublet refers to a theoretical construction, rather than a physical antenna design: It is an idealized tiny segment of conductor carrying a RF current with constant amplitude and direction along its entire (short) length; a real antenna can be modeled as the combination of many Hertzian dipoles laid end-to-end.
But this extra gain was needed anyway in order to make up for a number of problems with UHF signals. The log-periodic shape, according to the IEEE definition, [6] [7] does not align with broadband property for antennas. [8] [9] The broadband property of log-periodic antennas comes from its self-similarity.
As can be seen in the above table, for linear antennas shorter than their fundamental resonant length (shorter than 1 / 2 λ for a dipole antenna, 1 / 4 λ for a monopole) the radiation resistance decreases with the square of their length; [24] for loop antennas the change is even more extreme, with sub-resonant loops ...
For example, if Alice chooses a unit cell with positive ions at the top and Bob chooses the unit cell with negative ions at the top, their computed P vectors will have opposite directions. Alice and Bob will agree on the microscopic electric field E in the solid, but disagree on the value of the displacement field D = ε 0 E + P {\displaystyle ...
The phenomenon of a frequency-dependent permittivity is an example of material dispersion. In fact, all physical materials have some material dispersion because they cannot respond instantaneously to applied fields, but for many problems (those concerned with a narrow enough bandwidth ) the frequency-dependence of ε can be neglected.
The electron's electric dipole moment (EDM) must be collinear with the direction of the electron's magnetic moment (spin). [1] Within the Standard Model , such a dipole is predicted to be non-zero but very small, at most 10 −38 e ⋅cm , [ 2 ] where e stands for the elementary charge .