Search results
Results From The WOW.Com Content Network
The tables below list all of the divisors of the numbers 1 to 1000. A divisor of an integer n is an integer m , for which n / m is again an integer (which is necessarily also a divisor of n ). For example, 3 is a divisor of 21, since 21/7 = 3 (and therefore 7 is also a divisor of 21).
Print/export Download as PDF ... Change all occurrences of 7, 8 or 9 into 0, 1 and 2, respectively. ... This method works for divisors that are factors of 10 − 1 = 9.
This is equivalent to their greatest common divisor (GCD) being 1. [2] One says also a is prime to b or a is coprime with b. The numbers 8 and 9 are coprime, despite the fact that neither—considered individually—is a prime number, since 1 is their only common divisor. On the other hand, 6 and 9 are not coprime, because they are both ...
The divisors of n are all products of some or all prime factors of n (including the empty product 1 of no prime factors). The number of divisors can be computed by increasing all multiplicities by 1 and then multiplying them. Divisors and properties related to divisors are shown in table of divisors.
In number theory, the aliquot sum s(n) of a positive integer n is the sum of all proper divisors of n, that is, all divisors of n other than n itself. That is, = |,. It can be used to characterize the prime numbers, perfect numbers, sociable numbers, deficient numbers, abundant numbers, and untouchable numbers, and to define the aliquot sequence of a number.
Zelinsky proved that no three consecutive integers can all be refactorable. [1] Colton proved that no refactorable number is perfect . The equation gcd ( n , x ) = τ ( n ) {\displaystyle \gcd(n,x)=\tau (n)} has solutions only if n {\displaystyle n} is a refactorable number, where gcd {\displaystyle \gcd } is the greatest common divisor function.
Equivalently, it is a number for which the sum of proper divisors (or aliquot sum) is less than n. For example, the proper divisors of 8 are 1, 2, and 4, and their sum is less than 8, so 8 is deficient. Denoting by σ(n) the sum of divisors, the value 2n – σ(n) is called the number's deficiency.
In number theory, Zsigmondy's theorem, named after Karl Zsigmondy, states that if > > are coprime integers, then for any integer , there is a prime number p (called a primitive prime divisor) that divides and does not divide for any positive integer <, with the following exceptions: