Search results
Results From The WOW.Com Content Network
Iron(III) chloride forms a 1:2 adduct with Lewis bases such as triphenylphosphine oxide; e.g., FeCl 3 (OP(C 6 H 5) 3) 2. The related 1:2 complex FeCl 3 (OEt 2) 2, where Et = C 2 H 5), has been crystallized from ether solution. [14] Iron(III) chloride also reacts with tetraethylammonium chloride to give the yellow salt of the tetrachloroferrate ...
Potassium ferrioxalate contains the iron(III) complex [Fe(C 2 O 4) 3] 3−. In chemistry, iron(III) or ferric refers to the element iron in its +3 oxidation state. Ferric chloride is an alternative name for iron(III) chloride (FeCl 3). The adjective ferrous is used instead for iron(II) salts, containing the cation Fe 2+.
The iron compounds produced on the largest scale in industry are iron(II) sulfate (FeSO 4 ·7H 2 O) and iron(III) chloride (FeCl 3). The former is one of the most readily available sources of iron(II), but is less stable to aerial oxidation than Mohr's salt ((NH 4) 2 Fe(SO 4) 2 ·6H 2 O). Iron(II) compounds tend to be oxidized to iron(III ...
Iron(II) chloride tetrahydrate, FeCl 2 ·4H 2 O. In chemistry, iron(II) refers to the element iron in its +2 oxidation state. The adjective ferrous or the prefix ferro-is often used to specify such compounds, as in ferrous chloride for iron(II) chloride (FeCl 2). The adjective ferric is used instead for iron(III) salts, containing the cation Fe 3+.
Green rust is a generic name for various green crystalline chemical compounds containing iron(II) and iron(III) cations, the hydroxide (OH −) anion, and another anion such as carbonate (CO 2− 3), chloride (Cl −), or sulfate (SO 2− 4), in a layered double hydroxide (LDH) structure. The most studied varieties are the following: [1]
Iron(III) fluoride, also known as ferric fluoride, are inorganic compounds with the formula FeF 3 (H 2 O) x where x = 0 or 3. They are mainly of interest by researchers, unlike the related iron(III) chloride. Anhydrous iron(III) fluoride is white, whereas the hydrated forms are light pink. [2]
In the absence of EDTA or similar chelating agents, ferric ions form insoluble solids and are thus not bioavailable. [1] Together with pentetic acid (DTPA), EDTA is widely used for sequestering metal ions. Otherwise these metal ions catalyze the decomposition of hydrogen peroxide, which is used to bleach pulp in papermaking. Several million ...
Citrate forms a variety of coordination complexes with ferric ions. [6] [1] Some might be oligomers, and polymers. Thus, ferric citrate is not a single well-defined compound, but a family of compounds, many with similar formulas. These various forms can coexist in equilibrium. [7] At physiological pH, ferric citrate forms an insoluble red polymer.