Search results
Results From The WOW.Com Content Network
In mathematics, the extended real number system [a] is obtained from the real number system by adding two elements denoted + and [b] that are respectively greater and lower than every real number. This allows for treating the potential infinities of infinitely increasing sequences and infinitely decreasing series as actual infinities .
An axiomatic definition of the real numbers consists of defining them as the elements of a complete ordered field. [2] [3] [4] This means the following: The real numbers form a set, commonly denoted , containing two distinguished elements denoted 0 and 1, and on which are defined two binary operations and one binary relation; the operations are called addition and multiplication of real ...
The real numbers can be generalized and extended in several different directions: The complex numbers contain solutions to all polynomial equations and hence are an algebraically closed field unlike the real numbers. However, the complex numbers are not an ordered field. The affinely extended real number system adds two elements +∞ and −∞.
Computable number: A real number whose digits can be computed by some algorithm. Period: A number which can be computed as the integral of some algebraic function over an algebraic domain. Definable number: A real number that can be defined uniquely using a first-order formula with one free variable in the language of set theory.
The projectively extended real line extends the field of real numbers in the same way that the Riemann sphere extends the field of complex numbers, by adding a single point called conventionally ∞. In contrast, the affinely extended real number line (also called the two-point compactification of the real line) distinguishes between +∞ and ...
In mathematical analysis, limit superior and limit inferior are important tools for studying sequences of real numbers.Since the supremum and infimum of an unbounded set of real numbers may not exist (the reals are not a complete lattice), it is convenient to consider sequences in the affinely extended real number system: we add the positive and negative infinities to the real line to give the ...
In mathematics, the real numbers are intuitively defined as numbers that are in one-to-one correspondence with the points on an infinite line—the number line. The term "real number" is a retronym coined in response to "imaginary number". Together with the p-adic numbers, the reals are a limit set of the rational numbers. Real numbers may be ...
The real numbers can be defined synthetically as an ordered field satisfying some version of the completeness axiom.Different versions of this axiom are all equivalent in the sense that any ordered field that satisfies one form of completeness satisfies all of them, apart from Cauchy completeness and nested intervals theorem, which are strictly weaker in that there are non Archimedean fields ...