When.com Web Search

  1. Ad

    related to: data mining pdf notes class 10

Search results

  1. Results From The WOW.Com Content Network
  2. Data mining - Wikipedia

    en.wikipedia.org/wiki/Data_mining

    The difference between data analysis and data mining is that data analysis is used to test models and hypotheses on the dataset, e.g., analyzing the effectiveness of a marketing campaign, regardless of the amount of data. In contrast, data mining uses machine learning and statistical models to uncover clandestine or hidden patterns in a large ...

  3. Examples of data mining - Wikipedia

    en.wikipedia.org/wiki/Examples_of_data_mining

    Metabolomics is a very data heavy subject, and often involves sifting through massive amounts of irrelevant data before finding any conclusions. Data mining has allowed this relatively new field of medical research to grow considerably within the last decade, and will likely be the method of which new research is found within the subject. [28]

  4. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  5. Instance selection - Wikipedia

    en.wikipedia.org/wiki/Instance_selection

    Instance selection (or dataset reduction, or dataset condensation) is an important data pre-processing step that can be applied in many machine learning (or data mining) tasks. [1] Approaches for instance selection can be applied for reducing the original dataset to a manageable volume, leading to a reduction of the computational resources that ...

  6. Streaming algorithm - Wikipedia

    en.wikipedia.org/wiki/Streaming_algorithm

    The previous algorithm describes the first attempt to approximate F 0 in the data stream by Flajolet and Martin. Their algorithm picks a random hash function which they assume to uniformly distribute the hash values in hash space. Bar-Yossef et al. in [10] introduced k-minimum value algorithm for determining number of distinct elements in data ...

  7. Data stream mining - Wikipedia

    en.wikipedia.org/wiki/Data_stream_mining

    Data Stream Mining (also known as stream learning) is the process of extracting knowledge structures from continuous, rapid data records. A data stream is an ordered sequence of instances that in many applications of data stream mining can be read only once or a small number of times using limited computing and storage capabilities.

  8. Relational data mining - Wikipedia

    en.wikipedia.org/wiki/Relational_data_mining

    Relational data mining is the data mining technique for relational databases. [1] Unlike traditional data mining algorithms, which look for patterns in a single table (propositional patterns), relational data mining algorithms look for patterns among multiple tables (relational patterns). For most types of propositional patterns, there are ...

  9. Sequential pattern mining - Wikipedia

    en.wikipedia.org/wiki/Sequential_Pattern_Mining

    Sequential pattern mining is a topic of data mining concerned with finding statistically relevant patterns between data examples where the values are delivered in a sequence. [ 1 ] [ 2 ] It is usually presumed that the values are discrete, and thus time series mining is closely related, but usually considered a different activity.