When.com Web Search

  1. Ad

    related to: inscribed angle definition and example in math graph paper 16 30 3

Search results

  1. Results From The WOW.Com Content Network
  2. Inscribed angle - Wikipedia

    en.wikipedia.org/wiki/Inscribed_angle

    As a consequence of the theorem, opposite angles of cyclic quadrilaterals sum to 180°; conversely, any quadrilateral for which this is true can be inscribed in a circle. As another example, the inscribed angle theorem is the basis for several theorems related to the power of a point with respect to a circle. Further, it allows one to prove ...

  3. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    An inscribed angle (examples are the blue and green angles in the figure) is exactly half the corresponding central angle (red). Hence, all inscribed angles that subtend the same arc (pink) are equal. Angles inscribed on the arc (brown) are supplementary. In particular, every inscribed angle that subtends a diameter is a right angle (since the ...

  4. Malfatti circles - Wikipedia

    en.wikipedia.org/wiki/Malfatti_circles

    Malfatti's assumption that the two problems are equivalent is incorrect. Lob and Richmond (), who went back to the original Italian text, observed that for some triangles a larger area can be achieved by a greedy algorithm that inscribes a single circle of maximal radius within the triangle, inscribes a second circle within one of the three remaining corners of the triangle, the one with the ...

  5. List of theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems

    Kawasaki's theorem (mathematics of paper folding) Kelvin's circulation theorem ; Kempf–Ness theorem (algebraic geometry) Kepler conjecture (discrete geometry) Kharitonov's theorem (control theory) Khinchin's theorem (probability) Killing–Hopf theorem (Riemannian geometry) Kinoshita–Lee–Nauenberg theorem (quantum field theory)

  6. Incircle and excircles - Wikipedia

    en.wikipedia.org/wiki/Incircle_and_excircles

    [3] The center of the incircle, called the incenter, can be found as the intersection of the three internal angle bisectors. [3] [4] The center of an excircle is the intersection of the internal bisector of one angle (at vertex A, for example) and the external bisectors of the other two.

  7. Inscribed figure - Wikipedia

    en.wikipedia.org/wiki/Inscribed_figure

    Inscribed circles of various polygons An inscribed triangle of a circle A tetrahedron (red) inscribed in a cube (yellow) which is, in turn, inscribed in a rhombic triacontahedron (grey). (Click here for rotating model) In geometry, an inscribed planar shape or solid is one that is enclosed by and "fits snugly" inside another geometric shape or ...

  8. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    Inscribed angle theorem for hyperbolas [10] [11] — For four points = (,), =,,,, ,, (see diagram) the following statement is true: The four points are on a hyperbola with equation y = a x − b + c {\displaystyle y={\tfrac {a}{x-b}}+c} if and only if the angles at P 3 {\displaystyle P_{3}} and P 4 {\displaystyle P_{4}} are equal in the sense ...

  9. Miquel's theorem - Wikipedia

    en.wikipedia.org/wiki/Miquel's_theorem

    In addition, the three angles MA´B, MB´C and MC´A (green in the diagram) are all equal, as are the three supplementary angles MA´C, MB´A and MC´B. [2] [3] The theorem (and its corollary) follow from the properties of cyclic quadrilaterals. Let the circumcircles of A'B'C and AB'C' meet at ′.