When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Chlorophyll b - Wikipedia

    en.wikipedia.org/wiki/Chlorophyll_b

    Chlorophyll b is a form of chlorophyll. Chlorophyll b helps in photosynthesis by absorbing light energy. It is more soluble than chlorophyll a in polar solvents because of its carbonyl group. Its color is green, and it primarily absorbs blue light. [2] In land plants, the light-harvesting antennae around photosystem II contain the majority of ...

  3. Chlorophyll - Wikipedia

    en.wikipedia.org/wiki/Chlorophyll

    Chlorophyll b is made by the same enzyme acting on chlorophyllide b. The same is known for chlorophyll d and f, both made from corresponding chlorophyllides ultimately made from chlorophyllide a. [39] In Angiosperm plants, the later steps in the biosynthetic pathway are light-dependent. Such plants are pale if grown in darkness.

  4. Light-dependent reactions - Wikipedia

    en.wikipedia.org/wiki/Light-dependent_reactions

    The cyclic light-dependent reactions occur only when the sole photosystem being used is photosystem I. Photosystem I excites electrons which then cycle from the transport protein, ferredoxin (Fd), to the cytochrome complex, b 6 f, to another transport protein, plastocyanin (Pc), and back to photosystem I. A proton gradient is created across the ...

  5. Photosynthetic reaction centre - Wikipedia

    en.wikipedia.org/wiki/Photosynthetic_reaction_centre

    The reaction begins with the excitation of a pair of chlorophyll molecules similar to those in the bacterial reaction center. Due to the presence of chlorophyll a, as opposed to bacteriochlorophyll, Photosystem II absorbs light at a shorter wavelength. The pair of chlorophyll molecules at the reaction center are often referred to as P680. [1]

  6. Photosynthetic efficiency - Wikipedia

    en.wikipedia.org/wiki/Photosynthetic_efficiency

    The following is a breakdown of the energetics of the photosynthesis process from Photosynthesis by Hall and Rao: [6]. Starting with the solar spectrum falling on a leaf, 47% lost due to photons outside the 400–700 nm active range (chlorophyll uses photons between 400 and 700 nm, extracting the energy of one 700 nm photon from each one)

  7. Photosystem - Wikipedia

    en.wikipedia.org/wiki/Photosystem

    At the reaction center, there are many polypeptides that are surrounded by pigment proteins. At the center of the reaction center is a special pair of chlorophyll molecules. Each PSII has about 8 LHCII. These contain about 14 chlorophyll a and chlorophyll b molecules, as well as about four carotenoids. In the reaction center of PSII of plants ...

  8. Photophosphorylation - Wikipedia

    en.wikipedia.org/wiki/Photophosphorylation

    In 1950, first experimental evidence for the existence of photophosphorylation in vivo was presented by Otto Kandler using intact Chlorella cells and interpreting his findings as light-dependent ATP formation. [1] In 1954, Daniel I. Arnon et.al. discovered photophosphorylation in vitro in isolated chloroplasts with the help of P 32. [2]

  9. Action spectrum - Wikipedia

    en.wikipedia.org/wiki/Action_spectrum

    Absorbance spectra of free chlorophyll a (blue) and b (red) in a solvent. The action spectra of chlorophyll molecules are slightly modified in vivo depending on specific pigment-protein interactions. An action spectrum is a graph of the rate of biological effectiveness plotted against wavelength of light. [1]