When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Heat equation - Wikipedia

    en.wikipedia.org/wiki/Heat_equation

    Since heat density is proportional to temperature in a homogeneous medium, the heat equation is still obeyed in the new units. Suppose that a body obeys the heat equation and, in addition, generates its own heat per unit volume (e.g., in watts/litre - W/L) at a rate given by a known function q varying in space and time. [ 5 ]

  3. Table of thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Table_of_thermodynamic...

    Quantity (common name/s) (Common) symbol/s Defining equation SI unit Dimension Temperature gradient: No standard symbol K⋅m −1: ΘL −1: Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer

  4. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    (Note - the relation between pressure, volume, temperature, and particle number which is commonly called "the equation of state" is just one of many possible equations of state.) If we know all k+2 of the above equations of state, we may reconstitute the fundamental equation and recover all thermodynamic properties of the system.

  5. Heat capacity - Wikipedia

    en.wikipedia.org/wiki/Heat_capacity

    The SI unit for heat capacity of an object is joule per kelvin (J/K or J⋅K −1). Since an increment of temperature of one degree Celsius is the same as an increment of one kelvin, that is the same unit as J/°C. The heat capacity of an object is an amount of energy divided by a temperature change, which has the dimension L 2 ⋅M⋅T −2 ...

  6. Heat - Wikipedia

    en.wikipedia.org/wiki/Heat

    The molar heat capacity is the heat capacity per unit amount (SI unit: mole) of a pure substance, and the specific heat capacity, often called simply specific heat, is the heat capacity per unit mass of a material. Heat capacity is a physical property of a substance, which means that it depends on the state and properties of the substance under ...

  7. Fundamental thermodynamic relation - Wikipedia

    en.wikipedia.org/wiki/Fundamental_thermodynamic...

    The above derivation uses the first and second laws of thermodynamics. The first law of thermodynamics is essentially a definition of heat, i.e. heat is the change in the internal energy of a system that is not caused by a change of the external parameters of the system.

  8. Thermal conduction - Wikipedia

    en.wikipedia.org/wiki/Thermal_conduction

    This equation shows that the temperature decreases exponentially over time, with the rate governed by the properties of the material and the heat transfer coefficient. [7] The heat transfer coefficient , h , is measured in W m 2 K {\displaystyle \mathrm {\frac {W}{m^{2}K}} } , and represents the transfer of heat at an interface between two ...

  9. Temperature - Wikipedia

    en.wikipedia.org/wiki/Temperature

    According to energy conservation and energy being a state function that does not change over a full cycle, the work from a heat engine over a full cycle is equal to the net heat, i.e. the sum of the heat put into the system at high temperature, q H > 0, and the waste heat given off at the low temperature, q C < 0. [93]