Ads
related to: what is a r f value in chemistry test prep worksheet
Search results
Results From The WOW.Com Content Network
An R F value will always be in the range 0 to 1; if the substance moves, it can only move in the direction of the solvent flow, and cannot move faster than the solvent. For example, if particular substance in an unknown mixture travels 2.5 cm and the solvent front travels 5.0 cm, the retardation factor would be 0.50.
The response factor can be expressed on a molar, volume or mass [1] basis. Where the true amount of sample and standard are equal: = where A is the signal (e.g. peak area) and the subscript i indicates the sample and the subscript st indicates the standard. [2]
In contrast to the similar concept called Retention uniformity, R d is sensitive to R f values close to 0 or 1, or close to themselves. If two values are not separated, it is equal to 0. For example, the R f values (0,0.2,0.2,0.3) (two compounds not separated at 0.2 and one at the start ) result in R D equal to 0, but R U equal to 0.3609.
Another function is the multispot response function (MRF) as developed by De Spiegeleer et al.{Analytical Chemistry (1987):59(1),62-64} It is based also of differences product. This function always lies between 0 and 1. When two RF values are equal, it is equal to 0, when all RF values are equal-spread, it is equal to 1.
Retention uniformity, or R U, is a concept in thin layer chromatography. It is designed for the quantitative measurement of equal-spreading of the spots on the chromatographic plate and is one of the Chromatographic response functions .
F number is a correlation number used in the analysis of polycyclic aromatic hydrocarbons (PAHs) as a descriptor of their hydrophobicity and molecular size. [1] It was proposed by Robert Hurtubise and co-workers in 1977.
Small molecules (up to ca. 1000 atoms) usually form better-ordered crystals than large molecules, and thus it is possible to attain lower R-factors. In the Cambridge Structural Database of small-molecule structures, more than 95% of the 500,000+ crystals have an R-factor lower than 0.15, and 9.5% have an R-factor lower than 0.03.
where t R is the retention time and w b is the peak width at baseline. The bigger the time-difference and/or the smaller the bandwidths, the better the resolution of the compounds. The bigger the time-difference and/or the smaller the bandwidths, the better the resolution of the compounds.