When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Prime number - Wikipedia

    en.wikipedia.org/wiki/Prime_number

    The progressions of numbers that are 0, 3, or 6 mod 9 contain at most one prime number (the number 3); the remaining progressions of numbers that are 2, 4, 5, 7, and 8 mod 9 have infinitely many prime numbers, with similar numbers of primes in each progression.

  3. List of prime numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_prime_numbers

    This is a list of articles about prime numbers. A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem, there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with various formulas for primes.

  4. Primality test - Wikipedia

    en.wikipedia.org/wiki/Primality_test

    Also, 2 is a prime dividing 100, which immediately proves that 100 is not prime. Every positive integer except 1 is divisible by at least one prime number by the Fundamental Theorem of Arithmetic. Therefore the algorithm need only search for prime divisors less than or equal to .

  5. Prime constant - Wikipedia

    en.wikipedia.org/wiki/Prime_constant

    The prime constant is the real number whose th binary digit is 1 if is prime and 0 if is composite or 1. [ 1 ] In other words, ρ {\displaystyle \rho } is the number whose binary expansion corresponds to the indicator function of the set of prime numbers .

  6. Talk:1 - Wikipedia

    en.wikipedia.org/wiki/Talk:1

    A number following another number isn't really "fundamental" in fact, almost no fact about a number is fundamental (which is an important part of group theory). Is it due? Maybe, I would say no, per the emerging guideline at NROUTINE (as 2 follows 1, etc.) Allan Nonymous ( talk ) 17:53, 9 August 2024 (UTC) [ reply ]

  7. Euclid number - Wikipedia

    en.wikipedia.org/wiki/Euclid_number

    Not all Euclid numbers are prime. E 6 = 13# + 1 = 30031 = 59 × 509 is the first composite Euclid number. Every Euclid number is congruent to 3 modulo 4 since the primorial of which it is composed is twice the product of only odd primes and thus congruent to 2 modulo 4. This property implies that no Euclid number can be a square.

  8. Primality certificate - Wikipedia

    en.wikipedia.org/wiki/Primality_certificate

    We continue recursively in this manner until we reach a number known to be prime, such as 2. We end up with a tree of prime numbers, each associated with a witness a. For example, here is a complete Pratt certificate for the number 229: 229 (a = 6, 229 − 1 = 2 2 × 3 × 19), 2 (known prime), 3 (a = 2, 3 − 1 = 2), 2 (known prime),

  9. Trial division - Wikipedia

    en.wikipedia.org/wiki/Trial_division

    A definite bound on the prime factors is possible. Suppose P i is the i 'th prime, so that P 1 = 2, P 2 = 3, P 3 = 5, etc. Then the last prime number worth testing as a possible factor of n is P i where P 2 i + 1 > n; equality here would mean that P i + 1 is a factor.