When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Theta function - Wikipedia

    en.wikipedia.org/wiki/Theta_function

    There are several closely related functions called Jacobi theta functions, and many different and incompatible systems of notation for them. One Jacobi theta function (named after Carl Gustav Jacob Jacobi) is a function defined for two complex variables z and τ, where z can be any complex number and τ is the half-period ratio, confined to the upper half-plane, which means it has a positive ...

  3. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.

  4. Trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_functions

    Basis of trigonometry: if two right triangles have equal acute angles, they are similar, so their corresponding side lengths are proportional.. In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) [1] are real functions which relate an angle of a right-angled triangle to ratios of two side lengths.

  5. Riemann zeta function - Wikipedia

    en.wikipedia.org/wiki/Riemann_zeta_function

    The equation relates values of the Riemann zeta function at the points s and 1 − s, in particular relating even positive integers with odd negative integers. Owing to the zeros of the sine function, the functional equation implies that ζ(s) has a simple zero at each even negative integer s = −2n, known as the trivial zeros of ζ(s).

  6. Riemann–Siegel formula - Wikipedia

    en.wikipedia.org/wiki/Riemann–Siegel_formula

    Siegel derived it from the Riemann–Siegel integral formula, an expression for the zeta function involving contour integrals. It is often used to compute values of the Riemann–Siegel formula, sometimes in combination with the Odlyzko–Schönhage algorithm which speeds it up considerably.

  7. Ramanujan theta function - Wikipedia

    en.wikipedia.org/wiki/Ramanujan_theta_function

    In mathematics, particularly q-analog theory, the Ramanujan theta function generalizes the form of the Jacobi theta functions, while capturing their general properties. In particular, the Jacobi triple product takes on a particularly elegant form when written in terms of the Ramanujan theta. The function is named after mathematician Srinivasa ...

  8. Lambert series - Wikipedia

    en.wikipedia.org/wiki/Lambert_series

    with the sum on the right similar to the Ramanujan theta function, or Jacobi theta function (). Note that Lambert series in which the a n are trigonometric functions, for example, a n = sin(2n x), can be evaluated by various combinations of the logarithmic derivatives of Jacobi theta functions.

  9. Riemann–Siegel theta function - Wikipedia

    en.wikipedia.org/wiki/Riemann–Siegel_theta...

    In mathematics, the Riemann–Siegel theta function is defined in terms of the gamma function as = ⁡ ((+)) ⁡for real values of t.Here the argument is chosen in such a way that a continuous function is obtained and () = holds, i.e., in the same way that the principal branch of the log-gamma function is defined.