Search results
Results From The WOW.Com Content Network
The general Legendre equation reads ″ ′ + [(+)] =, where the numbers λ and μ may be complex, and are called the degree and order of the relevant function, respectively. . The polynomial solutions when λ is an integer (denoted n), and μ = 0 are the Legendre polynomials P n; and when λ is an integer (denoted n), and μ = m is also an integer with | m | < n are the associated Legendre ...
In mathematics, Legendre polynomials, named after Adrien-Marie Legendre (1782), are a system of complete and orthogonal polynomials with a wide number of mathematical properties and numerous applications. They can be defined in many ways, and the various definitions highlight different aspects as well as suggest generalizations and connections ...
In mathematics, the associated Legendre polynomials are the canonical solutions of the general Legendre equation () + [(+)] =,or equivalently [() ()] + [(+)] =,where the indices ℓ and m (which are integers) are referred to as the degree and order of the associated Legendre polynomial respectively.
Classical orthogonal polynomials appeared in the early 19th century in the works of Adrien-Marie Legendre, who introduced the Legendre polynomials. In the late 19th century, the study of continued fractions to solve the moment problem by P. L. Chebyshev and then A.A. Markov and T.J. Stieltjes led to the general notion of orthogonal polynomials.
Let (()) = be a sequence of orthogonal polynomials defined on the interval [,] satisfying the orthogonality condition () =,, where () is a suitable weight function, is a constant depending on , and , is the Kronecker delta.
Furthermore, a change of variables t = cos θ transforms this equation into the Legendre equation, whose solution is a multiple of the associated Legendre polynomial P m ℓ (cos θ). Finally, the equation for R has solutions of the form R(r) = A r ℓ + B r −ℓ − 1; requiring the solution to be regular throughout R 3 forces B = 0. [3]
The magic angle is a precisely defined angle, the value of which is approximately 54.7356°. The magic angle is a root of a second-order Legendre polynomial, P 2 (cos θ) = 0, and so any interaction which depends on this second-order Legendre polynomial vanishes at the magic angle.
In mathematics, Legendre's equation is a Diophantine equation of the form: + + = The equation is named for Adrien-Marie Legendre who proved it in 1785 that it is solvable in integers x, y, z, not all zero, if and only if −bc, −ca and −ab are quadratic residues modulo a, b and c, respectively, where a, b, c are nonzero, square-free, pairwise relatively prime integers and also not all ...