Search results
Results From The WOW.Com Content Network
The Brayton cycle, also known as the Joule cycle, is a thermodynamic cycle that describes the operation of certain heat engines that have air or some other gas as their working fluid. It is characterized by isentropic compression and expansion, and isobaric heat addition and rejection, though practical engines have adiabatic rather than ...
Thermodynamic cycles may be used to model real devices and systems, typically by making a series of assumptions to reduce the problem to a more manageable form. [2] For example, as shown in the figure, devices such a gas turbine or jet engine can be modeled as a Brayton cycle. The actual device is made up of a series of stages, each of which is ...
The heat from the source is converted into mechanical energy using a thermodynamic power cycle (such as a Diesel cycle, Rankine cycle, Brayton cycle, etc.). The most common cycle involves a working fluid (often water) heated and boiled under high pressure in a pressure vessel to produce high-pressure steam. This high pressure-steam is then ...
Brayton cycle: gas turbines and jet engines The Brayton cycle is the cycle used in gas turbines and jet engines. It consists of a compressor that increases pressure of the incoming air, then fuel is continuously added to the flow and burned, and the hot exhaust gasses are expanded in a turbine.
Heat can be converted into power through thermodynamic cycles, such as the Rankine cycle or Brayton cycle. Some technologies use the property of semiconductor materials to convert heat into electricity, and those are not considered a Carnot battery because there are no thermodynamic cycles involved in the conversion process, such as ...
Air-breathing jet engines typically feature a rotating air compressor powered by a turbine, with the leftover power providing thrust through the propelling nozzle—this process is known as the Brayton thermodynamic cycle. Jet aircraft use such engines for long-distance travel. Early jet aircraft used turbojet engines that were relatively ...
The choice of working fluids is known to have a significant impact on the thermodynamic as well as economic performance of the cycle. A suitable fluid must exhibit favorable physical, chemical, environmental, safety and economic properties such as low specific volume (high density), viscosity, toxicity, flammability, ozone depletion potential (ODP), global warming potential (GWP) and cost, as ...
Differs from Otto cycle in that V 1 < V 4. Brayton: adiabatic: isobaric: adiabatic: isobaric Ramjets, turbojets, -props, and -shafts. Originally developed for use in reciprocating engines. The external combustion version of this cycle is known as the first Ericsson cycle from 1833. Diesel: adiabatic: isobaric: adiabatic: isochoric Diesel engine ...