When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Coplanarity - Wikipedia

    en.wikipedia.org/wiki/Coplanarity

    In geometry, a set of points in space are coplanar if there exists a geometric plane that contains them all. For example, three points are always coplanar, and if the points are distinct and non-collinear, the plane they determine is unique. However, a set of four or more distinct points will, in general, not lie in a single plane.

  3. List of Johnson solids - Wikipedia

    en.wikipedia.org/wiki/List_of_Johnson_solids

    The points, lines, and polygons of a polyhedron are referred to as its vertices, edges, and faces, respectively. [1] A polyhedron is considered to be convex if: [2] The shortest path between any two of its vertices lies either within its interior or on its boundary. None of its faces are coplanar—they do not share the same plane and do not ...

  4. Parallel (geometry) - Wikipedia

    en.wikipedia.org/wiki/Parallel_(geometry)

    In geometry, parallel lines are coplanar infinite straight lines that do not intersect at any point. Parallel planes are planes in the same three-dimensional space that never meet. Parallel curves are curves that do not touch each other or intersect and keep a fixed minimum distance. In three-dimensional Euclidean space, a line and a plane that ...

  5. Desargues configuration - Wikipedia

    en.wikipedia.org/wiki/Desargues_configuration

    Although it may be embedded in two dimensions, the Desargues configuration has a very simple construction in three dimensions: for any configuration of five planes in general position in Euclidean space, the ten points where three planes meet and the ten lines formed by the intersection of two of the planes together form an instance of the configuration. [2]

  6. Skew lines - Wikipedia

    en.wikipedia.org/wiki/Skew_lines

    After the first three points have been chosen, the fourth point will define a non-skew line if, and only if, it is coplanar with the first three points. However, the plane through the first three points forms a subset of measure zero of the cube, and the probability that the fourth point lies on this plane is zero.

  7. Delaunay triangulation - Wikipedia

    en.wikipedia.org/wiki/Delaunay_triangulation

    The Euclidean minimum spanning tree of a set of points is a subset of the Delaunay triangulation of the same points, [22] and this can be exploited to compute it efficiently. For modelling terrain or other objects given a point cloud, the Delaunay triangulation gives a nice set of triangles to use as polygons in the model. In particular, the ...

  8. Barycentric coordinate system - Wikipedia

    en.wikipedia.org/wiki/Barycentric_coordinate_system

    Barycentric coordinates are strongly related to Cartesian coordinates and, more generally, affine coordinates.For a space of dimension n, these coordinate systems are defined relative to a point O, the origin, whose coordinates are zero, and n points , …,, whose coordinates are zero except that of index i that equals one.

  9. Polyhedron - Wikipedia

    en.wikipedia.org/wiki/Polyhedron

    Convex polyhedra can be defined in three-dimensional hyperbolic space in the same way as in Euclidean space, as the convex hulls of finite sets of points. However, in hyperbolic space, it is also possible to consider ideal points as well as the points that lie within the space. An ideal polyhedron is the convex hull of a finite set of ideal ...