When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Vertex figure - Wikipedia

    en.wikipedia.org/wiki/Vertex_figure

    For polyhedra with regular faces, a vertex figure can be represented in vertex configuration notation, by listing the faces in sequence around the vertex. For example 3.4.4.4 is a vertex with one triangle and three squares, and it defines the uniform rhombicuboctahedron.

  3. Face (geometry) - Wikipedia

    en.wikipedia.org/wiki/Face_(geometry)

    where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Euler's polyhedron formula. Thus the number of faces is 2 more than the excess of the number of edges over the number of vertices. For example, a cube has 12 edges and 8 vertices, and hence 6 faces.

  4. List of Johnson solids - Wikipedia

    en.wikipedia.org/wiki/List_of_Johnson_solids

    The points, lines, and polygons of a polyhedron are referred to as its vertices, edges, and faces, respectively. [1] A polyhedron is considered to be convex if: [2] The shortest path between any two of its vertices lies either within its interior or on its boundary. None of its faces are coplanar—they do not share the same plane and do not ...

  5. Regular dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Regular_dodecahedron

    The regular dodecahedron is a polyhedron with twelve pentagonal faces, thirty edges, and twenty vertices. [1] It is one of the Platonic solids, a set of polyhedrons in which the faces are regular polygons that are congruent and the same number of faces meet at a vertex. [2] This set of polyhedrons is named after Plato.

  6. Platonic solid - Wikipedia

    en.wikipedia.org/wiki/Platonic_solid

    None of its faces intersect except at their edges. The same number of faces meet at each of its vertices. Each Platonic solid can therefore be assigned a pair {p, q} of integers, where p is the number of edges (or, equivalently, vertices) of each face, and q is the number of

  7. Polyhedron - Wikipedia

    en.wikipedia.org/wiki/Polyhedron

    The elements of the set correspond to the vertices, edges, faces and so on of the polytope: vertices have rank 0, edges rank 1, etc. with the partially ordered ranking corresponding to the dimensionality of the geometric elements. The empty set, required by set theory, has a rank of −1 and is sometimes said to correspond to the null polytope.

  8. Tesseract - Wikipedia

    en.wikipedia.org/wiki/Tesseract

    The rows and columns correspond to vertices, edges, faces, and cells. The diagonal numbers say how many of each element occur in the whole tesseract. The diagonal reduces to the f-vector (16,32,24,8). The nondiagonal numbers say how many of the column's element occur in or at the row's element. [9]

  9. Dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Dodecahedron

    Regular star, great stellated dodecahedron, with regular pentagram faces Degenerate, 12 vertices in the center The concave equilateral dodecahedron, called an endo-dodecahedron. [clarification needed] A cube can be divided into a pyritohedron by bisecting all the edges, and faces in alternate directions.