Search results
Results From The WOW.Com Content Network
Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes.Two events are independent, statistically independent, or stochastically independent [1] if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds.
In probability theory, conditional independence describes situations wherein an observation is irrelevant or redundant when evaluating the certainty of a hypothesis. . Conditional independence is usually formulated in terms of conditional probability, as a special case where the probability of the hypothesis given the uninformative observation is equal to the probability
Independent: Each outcome of the die roll will not affect the next one, which means the 10 variables are independent from each other. Identically distributed: Regardless of whether the die is fair or weighted, each roll will have the same probability of seeing each result as every other roll. In contrast, rolling 10 different dice, some of ...
It is often used in statistics as a tool to prove independence of two statistics, by first demonstrating one is complete sufficient and the other is ancillary, then appealing to the theorem. [2] An example of this is to show that the sample mean and sample variance of a normal distribution are independent statistics, which is done in the ...
More generally, we can talk about k-wise independence, for any k ≥ 2. The idea is similar: a set of random variables is k-wise independent if every subset of size k of those variables is independent. k-wise independence has been used in theoretical computer science, where it was used to prove a theorem about the problem MAXEkSAT.
For each event in the objective probability mass function, one could approximate the probability of the event's occurrence with the proportion of times that any specified event occurs. The larger the number of repetitions, the better the approximation. As for the continuous case: = (, +], for small positive h. Thus, for large n:
In probability theory, Lindeberg's condition is a sufficient condition (and under certain conditions also a necessary condition) for the central limit theorem (CLT) to hold for a sequence of independent random variables.
Each of the probabilities on the right-hand side converge to zero as n → ∞ by definition of the convergence of {X n} and {Y n} in probability to X and Y respectively. Taking the limit we conclude that the left-hand side also converges to zero, and therefore the sequence {(X n, Y n)} converges in probability to {(X, Y)}.