Search results
Results From The WOW.Com Content Network
If a system initially rests at its equilibrium position, from where it is acted upon by a unit-impulse at the instance t=0, i.e., p(t) in the equation above is a Dirac delta function δ(t), () = | = =, then by solving the differential equation one can get a fundamental solution (known as a unit-impulse response function)
Blind deconvolution is not solvable without making assumptions on input and impulse response. Most of the algorithms to solve this problem are based on assumption that both input and impulse response live in respective known subspaces. However, blind deconvolution remains a very challenging non-convex optimization problem even with this assumption.
Showing, from top to bottom, the original impulse, the response after high frequency boosting, and the response after low frequency boosting. In signal processing and control theory, the impulse response, or impulse response function (IRF), of a dynamic system is its output when presented with a brief input signal, called an impulse (δ(t ...
If the problem is to solve a Dirichlet boundary value problem, the Green's function should be chosen such that G(x,x′) vanishes when either x or x′ is on the bounding surface. Thus only one of the two terms in the surface integral remains. If the problem is to solve a Neumann boundary value problem, it might seem logical to choose Green's ...
For a rational and continuous-time system, the condition for stability is that the region of convergence (ROC) of the Laplace transform includes the imaginary axis.When the system is causal, the ROC is the open region to the right of a vertical line whose abscissa is the real part of the "largest pole", or the pole that has the greatest real part of any pole in the system.
The result is a finite impulse response filter whose frequency response is modified from that of the IIR filter. Multiplying the infinite impulse by the window function in the time domain results in the frequency response of the IIR being convolved with the Fourier transform (or DTFT) of the window function. If the window's main lobe is narrow ...
The sinc function, the impulse response for an ideal low-pass filter, illustrating ringing for an impulse. The Gibbs phenomenon, illustrating ringing for a step function.. By definition, ringing occurs when a non-oscillating input yields an oscillating output: formally, when an input signal which is monotonic on an interval has output response which is not monotonic.
Shape of the impulse response of a typical Gaussian filter. In electronics and signal processing, mainly in digital signal processing, a Gaussian filter is a filter whose impulse response is a Gaussian function (or an approximation to it, since a true Gaussian response would have infinite impulse response).