Search results
Results From The WOW.Com Content Network
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.
In practice, considerable sodium is consumed by the formation of hydrogen. [citation needed] For this reason, an excess of sodium is often required. Because the hydrolysis of sodium is rapid, not to mention dangerous, the Bouveault-Blanc reaction requires anhydrous ethanol and can give low yields with insufficiently dry ethanol.
Ether synthesis by reaction of salicylaldehyde with chloroacetic acid and sodium hydroxide [1] The Williamson ether synthesis is an organic reaction, forming an ether from an organohalide and a deprotonated alcohol . This reaction was developed by Alexander Williamson in 1850. [2]
The Birch reduction is an organic reaction that is used to convert arenes to 1,4-cyclohexadienes.The reaction is named after the Australian chemist Arthur Birch and involves the organic reduction of aromatic rings in an amine solvent (traditionally liquid ammonia) with an alkali metal (traditionally sodium) and a proton source (traditionally an alcohol).
Under ideal conditions the reaction produces 50% of both the alcohol and the carboxylic acid (it takes two aldehydes to produce one acid and one alcohol). [5] This can be economically viable if the products can be separated and both have a value; the commercial conversion of furfural into furfuryl alcohol and 2-furoic acid is an example of this ...
It is easily prepared in the laboratory by treating sodium metal with absolute ethanol: [3] 2 CH 3 CH 2 OH + 2 Na → 2 CH 3 CH 2 ONa + H 2. The reaction of sodium hydroxide with anhydrous ethanol suffers from incomplete conversion to the ethoxide, but can still produce dry NaOEt by precipitation using acetone, [4] or by drying using additional ...
A classic case is sodium methoxide produced by the addition of sodium metal to methanol: [citation needed] 2 CH 3 OH + 2 Na → 2 CH 3 ONa + H 2. Other alkali metals can be used in place of sodium, and most alcohols can be used in place of methanol. Generally, the alcohol is used in excess and left to be used as a solvent in the reaction.
When iodine and sodium hydroxide are used as the reagents a positive reaction gives iodoform, which is a solid at room temperature and tends to precipitate out of solution causing a distinctive cloudiness. In organic chemistry, this reaction may be used to convert a terminal methyl ketone into the analogous carboxylic acid.