When.com Web Search

  1. Ad

    related to: multiplying negatives makes positive exponents

Search results

  1. Results From The WOW.Com Content Network
  2. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    When an exponent is a positive integer, that exponent indicates how many copies of the base are multiplied together. For example, 3 5 = 3 · 3 · 3 · 3 · 3 = 243. The base 3 appears 5 times in the multiplication, because the exponent is 5. Here, 243 is the 5th power of 3, or 3 raised to the 5th power.

  3. Exponentiation by squaring - Wikipedia

    en.wikipedia.org/wiki/Exponentiation_by_squaring

    In mathematics and computer programming, exponentiating by squaring is a general method for fast computation of large positive integer powers of a number, or more generally of an element of a semigroup, like a polynomial or a square matrix. Some variants are commonly referred to as square-and-multiply algorithms or binary exponentiation.

  4. Reciprocal rule - Wikipedia

    en.wikipedia.org/wiki/Reciprocal_rule

    The reciprocal rule can be used to show that the power rule holds for negative exponents if it has already been established for positive exponents. Also, one can readily deduce the quotient rule from the reciprocal rule and the product rule .

  5. Power of two - Wikipedia

    en.wikipedia.org/wiki/Power_of_two

    By comparison, powers of two with negative exponents are fractions: for positive integer n, 2 −n is one half multiplied by itself n times. Thus the first few negative powers of 2 are ⁠ 1 / 2 ⁠, ⁠ 1 / 4 ⁠, ⁠ 1 / 8 ⁠, ⁠ 1 / 16 ⁠, etc. Sometimes these are called inverse powers of two because each is the multiplicative inverse of ...

  6. Proof of Fermat's Last Theorem for specific exponents

    en.wikipedia.org/wiki/Proof_of_Fermat's_Last...

    The multiplication of two odd numbers is always odd, but the multiplication of an even number with any number is always even. An odd number raised to a power is always odd and an even number raised to power is always even, so for example x n has the same parity as x. Consider any primitive solution (x, y, z) to the equation x n + y n = z n.

  7. Posynomial - Wikipedia

    en.wikipedia.org/wiki/Posynomial

    A polynomial's exponents must be non-negative integers, but its independent variables and coefficients can be arbitrary real numbers; on the other hand, a posynomial's exponents can be arbitrary real numbers, but its independent variables and coefficients must be positive real numbers.

  8. Negative number - Wikipedia

    en.wikipedia.org/wiki/Negative_number

    the product of a negative number—al-nāqiṣ (loss)—by a positive number—al-zāʾid (gain)—is negative, and by a negative number is positive. If we subtract a negative number from a higher negative number, the remainder is their negative difference. The difference remains positive if we subtract a negative number from a lower negative ...

  9. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    To derive the value of the floating-point number, the significand is multiplied by the base raised to the power of the exponent, equivalent to shifting the radix point from its implied position by a number of places equal to the value of the exponent—to the right if the exponent is positive or to the left if the exponent is negative.