When.com Web Search

  1. Ad

    related to: interpolation vs extrapolation pdf

Search results

  1. Results From The WOW.Com Content Network
  2. Bulirsch–Stoer algorithm - Wikipedia

    en.wikipedia.org/wiki/Bulirsch–Stoer_algorithm

    In numerical analysis, the Bulirsch–Stoer algorithm is a method for the numerical solution of ordinary differential equations which combines three powerful ideas: Richardson extrapolation, the use of rational function extrapolation in Richardson-type applications, and the modified midpoint method, [1] to obtain numerical solutions to ordinary ...

  3. Comparison gallery of image scaling algorithms - Wikipedia

    en.wikipedia.org/wiki/Comparison_gallery_of...

    Simple Fourier based interpolation based on padding of the frequency domain with zero components (a smooth-window-based approach would reduce the ringing). Beside the good conservation of details, notable is the ringing and the circular bleeding of content from the left border to right border (and way around).

  4. Extrapolation - Wikipedia

    en.wikipedia.org/wiki/Extrapolation

    It is similar to interpolation, which produces estimates between known observations, but extrapolation is subject to greater uncertainty and a higher risk of producing meaningless results. Extrapolation may also mean extension of a method, assuming similar methods will be applicable.

  5. Interpolation - Wikipedia

    en.wikipedia.org/wiki/Interpolation

    The simplest interpolation method is to locate the nearest data value, and assign the same value. In simple problems, this method is unlikely to be used, as linear interpolation (see below) is almost as easy, but in higher-dimensional multivariate interpolation, this could be a favourable choice for its speed and simplicity.

  6. Multivariate interpolation - Wikipedia

    en.wikipedia.org/wiki/Multivariate_interpolation

    ) and the interpolation problem consists of yielding values at arbitrary points (,,, … ) {\displaystyle (x,y,z,\dots )} . Multivariate interpolation is particularly important in geostatistics , where it is used to create a digital elevation model from a set of points on the Earth's surface (for example, spot heights in a topographic survey or ...

  7. Linear interpolation - Wikipedia

    en.wikipedia.org/wiki/Linear_interpolation

    Linear interpolation on a data set (red points) consists of pieces of linear interpolants (blue lines). Linear interpolation on a set of data points (x 0, y 0), (x 1, y 1), ..., (x n, y n) is defined as piecewise linear, resulting from the concatenation of linear segment interpolants between each pair of data points.

  8. Polynomial interpolation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_interpolation

    We fix the interpolation nodes x 0, ..., x n and an interval [a, b] containing all the interpolation nodes. The process of interpolation maps the function f to a polynomial p. This defines a mapping X from the space C([a, b]) of all continuous functions on [a, b] to itself.

  9. List of numerical analysis topics - Wikipedia

    en.wikipedia.org/wiki/List_of_numerical_analysis...

    Multivariate interpolation — the function being interpolated depends on more than one variable Barnes interpolation — method for two-dimensional functions using Gaussians common in meteorology; Coons surface — combination of linear interpolation and bilinear interpolation; Lanczos resampling — based on convolution with a sinc function