Ads
related to: solving polynomial inequalities
Search results
Results From The WOW.Com Content Network
For instance, to solve the inequality 4x < 2x + 1 ≤ 3x + 2, it is not possible to isolate x in any one part of the inequality through addition or subtraction. Instead, the inequalities must be solved independently, yielding x < 1 / 2 and x ≥ −1 respectively, which can be combined into the final solution −1 ≤ x < 1 / 2 .
In numerical analysis, the Weierstrass method or Durand–Kerner method, discovered by Karl Weierstrass in 1891 and rediscovered independently by Durand in 1960 and Kerner in 1966, is a root-finding algorithm for solving polynomial equations. [1] In other words, the method can be used to solve numerically the equation f(x) = 0,
This polynomial is further reduced to = + + which is shown in blue and yields a zero of −5. The final root of the original polynomial may be found by either using the final zero as an initial guess for Newton's method, or by reducing () and solving the linear equation. As can be seen, the expected roots of −8, −5, −3, 2, 3, and 7 were ...
Thus solving a polynomial system over a number field is reduced to solving another system over the rational numbers. For example, if a system contains 2 {\displaystyle {\sqrt {2}}} , a system over the rational numbers is obtained by adding the equation r 2 2 – 2 = 0 and replacing 2 {\displaystyle {\sqrt {2}}} by r 2 in the other equations.
In mathematics, a polynomial is a mathematical expression consisting of indeterminates ... Determining the roots of polynomials, or "solving algebraic equations", is ...
Bernstein's inequality [ edit ] In mathematical analysis , Bernstein's inequality states that on the complex plane , within the disk of radius 1, the degree of a polynomial times the maximum value of a polynomial is an upper bound for the similar maximum of its derivative.
[41] [42] There are polynomial-time algorithms for linear programming that use interior point methods: these include Khachiyan's ellipsoidal algorithm, Karmarkar's projective algorithm, and path-following algorithms. [15] The Big-M method is an alternative strategy for solving a linear program, using a single-phase simplex.
Jensen's inequality generalizes the statement that a secant line of a convex function lies above its graph. Visualizing convexity and Jensen's inequality In mathematics , Jensen's inequality , named after the Danish mathematician Johan Jensen , relates the value of a convex function of an integral to the integral of the convex function.