Search results
Results From The WOW.Com Content Network
Germ cells lead to the production of gametes, while somatic cells perform all other functions within the body. Within the broad category of somatic cells, there is further specialization as cells become specified to certain tissues and functions. In addition, stem cell are undifferentiated cells which can develop into a specialized cell and are ...
Multicellular eukaryotes are made of two fundamental cell types: germ and somatic cells. Germ cells produce gametes and are the only cells that can undergo meiosis as well as mitosis. Somatic cells are all the other cells that form the building blocks of the body and they only divide by mitosis. The lineage of germ cells is called the germline.
In mammals, somatic cells make up all the internal organs, skin, bones, blood and connective tissue, while mammalian germ cells give rise to spermatozoa and ova which fuse during fertilization to produce a cell called a zygote, which divides and differentiates into the cells of an embryo. There are approximately 220 types of somatic cell in the ...
Cormlets of Watsonia meriana, an example of apomixis Clathria tuberosa, an example of a sponge that can grow indefinitely from somatic tissue and reconstitute itself from totipotent separated somatic cells. In biology and genetics, the germline is the population of a multicellular organism's cells that develop into germ cells.
These somatic cells are diploid, containing two copies of each chromosome, whereas germ cells are haploid, as they only contain one copy of each chromosome (in preparation for fertilisation). Although under normal circumstances all somatic cells in an organism contain identical DNA , they develop a variety of tissue-specific characteristics.
For example, in mammals, somatic cells make up the internal organs, skin, bones, blood, and connective tissue. [1] In most animals, separation of germ cells from somatic cells (germline development) occurs during early stages of development. Once this segregation has occurred in the embryo, any mutation outside of the germline cells can not be ...
Somatic cells are more commonly used for genetic analysis because they are easier to obtain than gametes. If the disease is a result of pure germline mosaicism, then the disease causing mutant allele would never be present in the somatic cells. This is a source of uncertainty for genetic counselling. An individual may still be a carrier for a ...
Such cells, called somatic cells, make up most of the human body, such as skin and muscle cells. Cells differentiate to specialize for different functions. [8] Germ line cells are any line of cells that give rise to gametes—eggs and sperm—and thus are continuous through the generations. Stem cells, on the other hand, have the ability to ...