Ads
related to: how to find resolution physics calculator
Search results
Results From The WOW.Com Content Network
The ability of a lens to resolve detail is usually determined by the quality of the lens, but is ultimately limited by diffraction.Light coming from a point source in the object diffracts through the lens aperture such that it forms a diffraction pattern in the image, which has a central spot and surrounding bright rings, separated by dark nulls; this pattern is known as an Airy pattern, and ...
The spectral resolution of a spectrograph, or, more generally, of a frequency spectrum, is a measure of its ability to resolve features in the electromagnetic spectrum.It is usually denoted by , and is closely related to the resolving power of the spectrograph, defined as =, where is the smallest difference in wavelengths that can be distinguished at a wavelength of .
Angular resolution describes the ability of any image-forming device such as an optical or radio telescope, a microscope, a camera, or an eye, to distinguish small details of an object, thereby making it a major determinant of image resolution.
Memorial in Jena, Germany to Ernst Karl Abbe, who approximated the diffraction limit of a microscope as = , where d is the resolvable feature size, λ is the wavelength of light, n is the index of refraction of the medium being imaged in, and θ (depicted as α in the inscription) is the half-angle subtended by the optical objective lens (representing the numerical aperture).
In laser physics, numerical aperture is defined slightly differently. Laser beams spread out as they propagate, but slowly. Laser beams spread out as they propagate, but slowly. Far away from the narrowest part of the beam, the spread is roughly linear with distance—the laser beam forms a cone of light in the "far field".
The f-number N is given by: = where f is the focal length, and D is the diameter of the entrance pupil (effective aperture).It is customary to write f-numbers preceded by "f /", which forms a mathematical expression of the entrance pupil's diameter in terms of f and N. [1]
The most general form of Cauchy's equation is = + + +,where n is the refractive index, λ is the wavelength, A, B, C, etc., are coefficients that can be determined for a material by fitting the equation to measured refractive indices at known wavelengths.
Some mass spectrometrists use the definition that is similar to definitions used in some other fields of physics and chemistry. In this case, resolving power is defined as: R = M Δ M = r e s o l v i n g p o w e r {\displaystyle R={\cfrac {M}{\Delta M}}=\mathrm {resolving\ power} }