Search results
Results From The WOW.Com Content Network
Convex functions play an important role in many areas of mathematics. They are especially important in the study of optimization problems where they are distinguished by a number of convenient properties. For instance, a strictly convex function on an open set has no more than one minimum.
Convex function - a function in which the line segment between any two points on the graph of the function lies above the graph. Closed convex function - a convex function all of whose sublevel sets are closed sets. Proper convex function - a convex function whose effective domain is nonempty and it never attains minus infinity. Concave ...
If : is a continuous function and is open, then is closed if and only if it converges to along every sequence converging to a boundary point of . [ 2 ] A closed proper convex function f is the pointwise supremum of the collection of all affine functions h such that h ≤ f (called the affine minorants of f ).
Characteristic function (convex analysis) Closed convex function; Complex convexity; Concave function; Concavification; Convex cap; Convex compactification; Convex cone; Convex conjugate; Convex function; Convex hull; Convex optimization; Convex set; Copositive matrix
Convex analysis includes not only the study of convex subsets of Euclidean spaces but also the study of convex functions on abstract spaces. Convex analysis is the branch of mathematics devoted to the study of properties of convex functions and convex sets , often with applications in convex minimization , a subdomain of optimization theory .
In mathematics, the modulus of convexity and the characteristic of convexity are measures of "how convex" the unit ball in a Banach space is. In some sense, the modulus of convexity has the same relationship to the ε-δ definition of uniform convexity as the modulus of continuity does to the ε-δ definition of continuity.
In the field of mathematics known as convex analysis, the characteristic function of a set is a convex function that indicates the membership (or non-membership) of a given element in that set. It is similar to the usual indicator function , and one can freely convert between the two, but the characteristic function as defined below is better ...
For every proper convex function : [,], there exist some and such that ()for every .. The sum of two proper convex functions is convex, but not necessarily proper. [4] For instance if the sets and are non-empty convex sets in the vector space, then the characteristic functions and are proper convex functions, but if = then + is identically equal to +.