When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Kabsch algorithm - Wikipedia

    en.wikipedia.org/wiki/Kabsch_algorithm

    Let P and Q be two sets, each containing N points in .We want to find the transformation from Q to P.For simplicity, we will consider the three-dimensional case (=).The sets P and Q can each be represented by N × 3 matrices with the first row containing the coordinates of the first point, the second row containing the coordinates of the second point, and so on, as shown in this matrix:

  3. Algorithms for calculating variance - Wikipedia

    en.wikipedia.org/wiki/Algorithms_for_calculating...

    Algorithms for calculating variance play a major role in computational statistics.A key difficulty in the design of good algorithms for this problem is that formulas for the variance may involve sums of squares, which can lead to numerical instability as well as to arithmetic overflow when dealing with large values.

  4. Symbolab - Wikipedia

    en.wikipedia.org/wiki/Symbolab

    Later, the ability to show all of the steps explaining the calculation were added. [6] The company's emphasis gradually drifted towards focusing on providing step-by-step solutions for mathematical problems at the secondary and post-secondary levels. Symbolab relies on machine learning algorithms for both the search and solution aspects of the ...

  5. Analysis of covariance - Wikipedia

    en.wikipedia.org/wiki/Analysis_of_covariance

    Analysis of covariance (ANCOVA) is a general linear model that blends ANOVA and regression. ANCOVA evaluates whether the means of a dependent variable (DV) are equal across levels of one or more categorical independent variables (IV) and across one or more continuous variables.

  6. Covariance function - Wikipedia

    en.wikipedia.org/wiki/Covariance_function

    In probability theory and statistics, the covariance function describes how much two random variables change together (their covariance) with varying spatial or temporal separation. For a random field or stochastic process Z ( x ) on a domain D , a covariance function C ( x , y ) gives the covariance of the values of the random field at the two ...

  7. Multivariate analysis of covariance - Wikipedia

    en.wikipedia.org/wiki/Multivariate_analysis_of...

    An example is provided by the analysis of trend in sea-level by Woodworth (1987). [9] Here the dependent variable (and variable of most interest) was the annual mean sea level at a given location for which a series of yearly values were available. The primary independent variable was "time".

  8. Kosambi–Karhunen–Loève theorem - Wikipedia

    en.wikipedia.org/wiki/Kosambi–Karhunen–Loève...

    Recall that the main implication and difficulty of the KL transformation is computing the eigenvectors of the linear operator associated to the covariance function, which are given by the solutions to the integral equation written above. Define Σ, the covariance matrix of X, as an N × N matrix whose elements are given by:

  9. Ensemble Kalman filter - Wikipedia

    en.wikipedia.org/wiki/Ensemble_Kalman_filter

    The ensemble Kalman filter (EnKF) is a Monte Carlo implementation of the Bayesian update problem: given a probability density function (PDF) of the state of the modeled system (the prior, called often the forecast in geosciences) and the data likelihood, Bayes' theorem is used to obtain the PDF after the data likelihood has been taken into account (the posterior, often called the analysis).