Search results
Results From The WOW.Com Content Network
The descriptor extratropical signifies that this type of cyclone generally occurs outside the tropics and in the middle latitudes of Earth between 30° and 60° latitude. They are termed mid-latitude cyclones if they form within those latitudes, or post-tropical cyclones if a tropical cyclone has intruded into the mid latitudes.
A dangerous weather phenomenon called a bomb cyclone that occurs in mid-latitudes - between Earth's tropics and the polar regions - can bring strong and damaging winds, torrential rains, heavy ...
The descriptor "extratropical" refers to the fact that this type of cyclone generally occurs outside of the tropics, in the middle latitudes of the planet. These systems may also be described as "mid-latitude cyclones" due to their area of formation, or "post-tropical cyclones" where extratropical transition has occurred, [ 5 ] [ 6 ] but are ...
The westerlies, anti-trades, [2] or prevailing westerlies, are prevailing winds from the west toward the east in the middle latitudes between 30 and 60 degrees latitude. They originate from the high-pressure areas in the horse latitudes (about 30 degrees) and trend towards the poles and steer extratropical cyclones in this general manner. [3]
World map with the middle latitudes highlighted in red Extratropical cyclone formation areas. The middle latitudes, also called the mid-latitudes (sometimes spelled midlatitudes) or moderate latitudes, are spatial regions on either hemisphere of Earth, located between the Tropic of Cancer (latitude 23°26′09.7″) and the Arctic Circle (66°33′50.3″) in the northern hemisphere and ...
Cyclones have also been seen on extraterrestrial planets, such as Mars, Jupiter, and Neptune. [7] [8] Cyclogenesis is the process of cyclone formation and intensification. [9] Extratropical cyclones begin as waves in large regions of enhanced mid-latitude temperature contrasts called baroclinic zones.
Although the formation of tropical cyclones is the topic of extensive ongoing research and is still not fully understood, there are six main requirements for tropical cyclogenesis: sea surface temperatures that are warm enough, atmospheric instability, high humidity in lower to middle levels of the troposphere, enough Coriolis force to develop ...
Mesoscale convective systems are thunderstorm regions which may be round or linear in shape, on the order of 100 kilometres (62 mi) or more across in one direction but smaller than extratropical cyclones, [2] and include systems such as tropical cyclones, squall lines, and mesoscale convective complexes (MCCs), among others. MCS is a more ...