When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euler–Lagrange equation - Wikipedia

    en.wikipedia.org/wiki/EulerLagrange_equation

    The EulerLagrange equation was developed in connection with their studies of the tautochrone problem. The EulerLagrange equation was developed in the 1750s by Euler and Lagrange in connection with their studies of the tautochrone problem. This is the problem of determining a curve on which a weighted particle will fall to a fixed point in ...

  3. Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_mechanics

    However, the EulerLagrange equations can only account for non-conservative forces if a potential can be found as shown. This may not always be possible for non-conservative forces, and Lagrange's equations do not involve any potential, only generalized forces; therefore they are more general than the EulerLagrange equations.

  4. Inverse problem for Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Inverse_problem_for...

    To simplify the notation, let = ˙ and define a collection of n 2 functions Φ j i by =. Theorem. (Douglas 1941) There exists a Lagrangian L : [0, T] × TM → R such that the equations (E) are its EulerLagrange equations if and only if there exists a non-singular symmetric matrix g with entries g ij depending on both u and v satisfying the following three Helmholtz conditions:

  5. Direct method in the calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Direct_method_in_the...

    This is similar to solving the EulerLagrange equation with Dirichlet boundary conditions. Additionally there are settings in which there are minimizers in , (,) but not in , (,). The idea of solving minimization problems while restricting the values on the boundary can be further generalized by looking on function spaces where the trace is ...

  6. Linear multistep method - Wikipedia

    en.wikipedia.org/wiki/Linear_multistep_method

    Single-step methods (such as Euler's method) refer to only one previous point and its derivative to determine the current value. Methods such as Runge–Kutta take some intermediate steps (for example, a half-step) to obtain a higher order method, but then discard all previous information before taking a second step. Multistep methods attempt ...

  7. Ostrogradsky instability - Wikipedia

    en.wikipedia.org/wiki/Ostrogradsky_instability

    The main points of the proof can be made clearer by considering a one-dimensional system with a Lagrangian (, ˙, ¨).The EulerLagrange equation is ˙ + ¨ = Non-degeneracy of means that the canonical coordinates can be expressed in terms of the derivatives of and vice versa.

  8. Hamiltonian optics - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_optics

    The general results presented above for Hamilton's principle can be applied to optics using the Lagrangian defined in Fermat's principle.The Euler-Lagrange equations with parameter σ =x 3 and N=2 applied to Fermat's principle result in ˙ = with k = 1, 2 and where L is the optical Lagrangian and ˙ = /.

  9. Action principles - Wikipedia

    en.wikipedia.org/wiki/Action_principles

    Action principles are "integral" approaches rather than the "differential" approach of Newtonian mechanics.[2]: 162 The core ideas are based on energy, paths, an energy function called the Lagrangian along paths, and selection of a path according to the "action", a continuous sum or integral of the Lagrangian along the path.