Search results
Results From The WOW.Com Content Network
An arbitrary shape. ρ is the distance to the element dA, with projections x and y on the x and y axes.. The second moment of area for an arbitrary shape R with respect to an arbitrary axis ′ (′ axis is not drawn in the adjacent image; is an axis coplanar with x and y axes and is perpendicular to the line segment) is defined as ′ = where
A point P has coordinates (x, y) with respect to the original system and coordinates (x′, y′) with respect to the new system. [1] In the new coordinate system, the point P will appear to have been rotated in the opposite direction, that is, clockwise through the angle . A rotation of axes in more than two dimensions is defined similarly.
The image of a figure by a reflection is its mirror image in the axis or plane of reflection. For example the mirror image of the small Latin letter p for a reflection with respect to a vertical axis (a vertical reflection) would look like q. Its image by reflection in a horizontal axis (a horizontal reflection) would look like b.
Secant-, chord-theorem. For the intersecting secants theorem and chord theorem the power of a point plays the role of an invariant: . Intersecting secants theorem: For a point outside a circle and the intersection points , of a secant line with the following statement is true: | | | | = (), hence the product is independent of line .
To plot any dot from its spherical coordinates (r, θ, φ), where θ is inclination, the user would: move r units from the origin in the zenith reference direction (z-axis); then rotate by the amount of the azimuth angle (φ) about the origin from the designated azimuth reference direction, (i.e., either the x– or y–axis, see Definition ...
For an xyz-Cartesian coordinate system in three dimensions, suppose that a second Cartesian coordinate system is introduced, with axes x', y' and z' so located that the x' axis is parallel to the x axis and h units from it, the y' axis is parallel to the y axis and k units from it, and the z' axis is parallel to the z axis and l units from it.
In Euclidean geometry, the inversion of a point X with respect to a point P is a point X* such that P is the midpoint of the line segment with endpoints X and X*. In other words, the vector from X to P is the same as the vector from P to X*. The formula for the inversion in P is x* = 2p − x. where p, x and x* are the position vectors of P, X ...
Fixing or choosing the x-axis determines the y-axis up to direction. Namely, the y-axis is necessarily the perpendicular to the x-axis through the point marked 0 on the x-axis. But there is a choice of which of the two half lines on the perpendicular to designate as positive and which as negative.