Ads
related to: cis octahedral complex chemistry class 10 book pdf scribd answersstudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
The system most often studied for the cis effect is an octahedral complex M(CO) 5 X where X is the ligand that will labilize a CO ligand cis to it. Unlike the trans effect, which is most often observed in 4-coordinate square planar complexes, the cis effect is observed in 6-coordinate octahedral transition metal complexes.
For ML a 4 L b 2, two isomers exist.These isomers of ML a 4 L b 2 are cis, if the L b ligands are mutually adjacent, and trans, if the L b groups are situated 180° to each other. It was the analysis of such complexes that led Alfred Werner to the 1913 Nobel Prize–winning postulation of octahedral complexes.
Very often, cis–trans stereoisomers contain double bonds or ring structures. In both cases the rotation of bonds is restricted or prevented. [4] When the substituent groups are oriented in the same direction, the diastereomer is referred to as cis, whereas when the substituents are oriented in opposing directions, the diastereomer is referred to as trans.
The descriptors cis (Latin, on this side of) [2] and trans (Latin, over, beyond) [3] are used in various contexts for the description of chemical configurations: [4] [5] In organic structural chemistry , the configuration of a double bond can be described with cis and trans , in case it has a simple substitution pattern with only two residues.
In inorganic chemistry, the trans effect is the increased lability of ligands that are trans to certain other ligands, which can thus be regarded as trans-directing ligands. It is attributed to electronic effects and it is most notable in square planar complexes , although it can also be observed for octahedral complexes. [ 1 ]
In an octahedral complex, the molecular orbitals created by coordination can be seen as resulting from the donation of two electrons by each of six σ-donor ligands to the d-orbitals on the metal. In octahedral complexes, ligands approach along the x -, y - and z -axes, so their σ-symmetry orbitals form bonding and anti-bonding combinations ...
A related class of octahedral clusters are of the type M 6 X 8 L 6 where M is a metal usually of group 6 or group 7, X is a ligand and more specifically an inner ligand of the chalcohalide group such as chloride or sulfide and L is an "outer ligand." The metal atoms define the vertices of an octahedron.
Also, for the D Orgel diagram, the left side contains d 1 and d 6 tetrahedral and d 4 and d 9 octahedral complexes. The right side contains d 4 and d 9 tetrahedral and d 1 and d 6 octahedral complexes. For the F Orgel diagram, the left side contains d 2 and d 7 tetrahedral and d 3 and d 8 octahedral complexes.