When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Differentiable function - Wikipedia

    en.wikipedia.org/wiki/Differentiable_function

    A differentiable function. In mathematics, a differentiable function of one real variable is a function whose derivative exists at each point in its domain.In other words, the graph of a differentiable function has a non-vertical tangent line at each interior point in its domain.

  3. Conservative vector field - Wikipedia

    en.wikipedia.org/wiki/Conservative_vector_field

    = in the line integral is an exact differential for an orthogonal coordinate system (e.g., Cartesian, cylindrical, or spherical coordinates). Since the gradient theorem is applicable for a differentiable path, the path independence of a conservative vector field over piecewise-differential curves is also proved by the proof per differentiable ...

  4. Critical point (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Critical_point_(mathematics)

    The value of the function at a critical point is a critical value. [1] More specifically, when dealing with functions of a real variable, a critical point, also known as a stationary point, is a point in the domain of the function where the function derivative is equal to zero (or where the function is not differentiable). [2]

  5. Generalizations of the derivative - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of_the...

    The q-derivative of a function is defined by the formula () = () (). For x nonzero, if f is a differentiable function of x then in the limit as q → 1 we obtain the ordinary derivative, thus the q-derivative may be viewed as its q-deformation.

  6. Fréchet derivative - Wikipedia

    en.wikipedia.org/wiki/Fréchet_derivative

    A function differentiable at a point is continuous at that point. Differentiation is a linear operation in the following sense: if and are two maps which are differentiable at , and is a scalar (a real or complex number), then the Fréchet derivative obeys the following properties: () = (+) = + ().

  7. Inverse function rule - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_rule

    In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f. More precisely, if the inverse of f {\displaystyle f} is denoted as f − 1 {\displaystyle f^{-1}} , where f − 1 ( y ) = x {\displaystyle f^{-1}(y)=x} if and only if f ...

  8. Semi-differentiability - Wikipedia

    en.wikipedia.org/wiki/Semi-differentiability

    Let f denote a real-valued function defined on a subset I of the real numbers.. If a ∈ I is a limit point of I ∩ [a,∞) and the one-sided limit + ():= + () exists as a real number, then f is called right differentiable at a and the limit ∂ + f(a) is called the right derivative of f at a.

  9. Differential of a function - Wikipedia

    en.wikipedia.org/wiki/Differential_of_a_function

    The differential was first introduced via an intuitive or heuristic definition by Isaac Newton and furthered by Gottfried Leibniz, who thought of the differential dy as an infinitely small (or infinitesimal) change in the value y of the function, corresponding to an infinitely small change dx in the function's argument x.