Search results
Results From The WOW.Com Content Network
In mathematics, a product is the result of multiplication, or an expression that identifies objects (numbers or variables) to be multiplied, called factors. For example, 21 is the product of 3 and 7 (the result of multiplication), and x ⋅ ( 2 + x ) {\displaystyle x\cdot (2+x)} is the product of x {\displaystyle x} and ( 2 + x ) {\displaystyle ...
11 × 2 = 22 (Multiply the result by 2) 110 ÷ 5 = 22 (The result is the same as the original number divided by 5) If the last digit is 5. 85 (The original number) 8 5 (Take the last digit of the number, and check if it is 0 or 5) 8 5 (If it is 5, take the remaining digits, discarding the last) 8 × 2 = 16 (Multiply the result by 2)
Karatsuba multiplication is an O(n log 2 3) ≈ O(n 1.585) divide and conquer algorithm, that uses recursion to merge together sub calculations. By rewriting the formula, one makes it possible to do sub calculations / recursion. By doing recursion, one can solve this in a fast manner.
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
For example: 24 x 11 = 264 because 2 + 4 = 6 and the 6 is placed in between the 2 and the 4. Second example: 87 x 11 = 957 because 8 + 7 = 15 so the 5 goes in between the 8 and the 7 and the 1 is carried to the 8. So it is basically 857 + 100 = 957.
Multiplication is an arithmetic operation in which two numbers, called the multiplier and the multiplicand, are combined into a single number called the product. [50] [d] The symbols of multiplication are , , and *.
An integral multiplier refers to the multiplier n being an integer: . An integer X shift right cyclically by k positions when it is multiplied by an integer n.X is then the repeating digits of 1 ⁄ F, whereby F is F 0 = n 10 k − 1 (F 0 is coprime to 10), or a factor of F 0; excluding any values of F which are not more than n.
One of the basic principles of algebra is that one can multiply both sides of an equation by the same expression without changing the equation's solutions. However, strictly speaking, this is not true, in that multiplication by certain expressions may introduce new solutions that were not present before. For example, consider the following ...