Search results
Results From The WOW.Com Content Network
Later it was incorporated into a Boost library, and was proposed for inclusion in the standard C++ library. The motivation for inclusion of array was that it solves two problems of the C-style array: the lack of an STL-like interface, and an inability to be copied like any other object.
In computer science, array is a data type that represents a collection of elements (values or variables), each selected by one or more indices (identifying keys) that can be computed at run time during program execution. Such a collection is usually called an array variable or array value. [1]
Structure of arrays (SoA) is a layout separating elements of a record (or 'struct' in the C programming language) into one parallel array per field. [1] The motivation is easier manipulation with packed SIMD instructions in most instruction set architectures, since a single SIMD register can load homogeneous data, possibly transferred by a wide internal datapath (e.g. 128-bit).
As an example consider the C declaration int anArrayName[10]; which declares a one-dimensional array of ten integers. Here, the array can store ten elements of type int. This array has indices starting from zero through nine. For example, the expressions anArrayName[0] and anArrayName[9] are the first and last elements respectively.
An associative container uses an associative array, map, or dictionary, composed of key-value pairs, such that each key appears at most once in the container. The key is used to find the value, the object, if it is stored in the container. Associative containers are used in programming languages as class templates.
Array programming primitives concisely express broad ideas about data manipulation. The level of concision can be dramatic in certain cases: it is not uncommon [example needed] to find array programming language one-liners that require several pages of object-oriented code.
Interval scheduling is a class of problems in computer science, particularly in the area of algorithm design. The problems consider a set of tasks. Each task is represented by an interval describing the time in which it needs to be processed by some machine (or, equivalently, scheduled on some resource).
In C++11, this technique is known as generalized constant expressions (constexpr). [2] C++14 relaxes the constraints on constexpr – allowing local declarations and use of conditionals and loops (the general restriction that all data required for the execution be available at compile-time remains).