Search results
Results From The WOW.Com Content Network
The transfer function of an ideal diode has been given at the top of this (non-linear) section. However, this formula is rarely used in network analysis, a piecewise approximation being used instead. It can be seen that the diode current rapidly diminishes to -I o as the voltage falls. This current, for most purposes, is so small it can be ignored.
Figure 2.Greinacher circuit. The Greinacher voltage doubler is a significant improvement over the Villard circuit for a small cost in additional components. The ripple is much reduced, nominally zero under open-circuit load conditions, but when current is being drawn depends on the resistance of the load and the value of the capacitors used.
In power supply design, a bridge circuit or bridge rectifier is an arrangement of diodes or similar devices used to rectify an electric current, i.e. to convert it from an unknown or alternating polarity to a direct current of known polarity. In some motor controllers, an H-bridge is used to control the direction the motor turns.
This model uses two piecewise-linear diodes in parallel, as a way to model a single diode more accurately. PWL Diode model with 2 branches. The top branch has a lower forward-voltage and a higher resistance. This allows the diode to switch on more gradually, and in this regard more accurately models a real diode.
The current in a series circuit goes through every component in the circuit. Therefore, all of the components in a series connection carry the same current. A series circuit has only one path through which its current can flow. Opening or breaking a series circuit at any point causes the entire circuit to "open" or stop operating.
In the example, the total current I total is given by: = + (+) =. The current through the load is then, using the current divider rule: = + + + = / =. And the equivalent resistance looking back into the circuit is:
The characteristic curve (curved line), representing the current I through the diode for any given voltage across the diode V D, is an exponential curve. The load line (diagonal line), representing the relationship between current and voltage due to Kirchhoff's voltage law applied to the resistor and voltage source, is
Shockley derives an equation for the voltage across a p-n junction in a long article published in 1949. [2] Later he gives a corresponding equation for current as a function of voltage under additional assumptions, which is the equation we call the Shockley ideal diode equation. [3]