When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Linearity of differentiation - Wikipedia

    en.wikipedia.org/wiki/Linearity_of_differentiation

    In calculus, the derivative of any linear combination of functions equals the same linear combination of the derivatives of the functions; [1] this property is known as linearity of differentiation, the rule of linearity, [2] or the superposition rule for differentiation. [3] It is a fundamental property of the derivative that encapsulates in a ...

  3. Second derivative - Wikipedia

    en.wikipedia.org/wiki/Second_derivative

    The second derivative of a quadratic function is constant. In calculus, the second derivative, or the second-order derivative, of a function f is the derivative of the derivative of f. Informally, the second derivative can be phrased as "the rate of change of the rate of change"; for example, the second derivative of the position of an object ...

  4. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    A closely related concept to the derivative of a function is its differential. When x and y are real variables, the derivative of f at x is the slope of the tangent line to the graph of f at x. Because the source and target of f are one-dimensional, the derivative of f is a real number.

  5. Linear function (calculus) - Wikipedia

    en.wikipedia.org/wiki/Linear_function_(calculus)

    A linear function is a polynomial function in which the variable x has degree at most one: [2] . Such a function is called linear because its graph, the set of all points in the Cartesian plane, is a line. The coefficient a is called the slope of the function and of the line (see below). If the slope is , this is a constant function defining a ...

  6. Gradient theorem - Wikipedia

    en.wikipedia.org/wiki/Gradient_theorem

    The gradient theorem implies that line integrals through gradient fields are path-independent. In physics this theorem is one of the ways of defining a conservative force. By placing φ as potential, ∇φ is a conservative field. Work done by conservative forces does not depend on the path followed by the object, but only the end points, as ...

  7. Calculus - Wikipedia

    en.wikipedia.org/wiki/Calculus

    Here is a particular example, the derivative of the squaring function at the input 3. Let f(x) = x 2 be the squaring function. The derivative f′(x) of a curve at a point is the slope of the line tangent to that curve at that point. This slope is determined by considering the limiting value of the slopes of the second lines.

  8. Leibniz's notation - Wikipedia

    en.wikipedia.org/wiki/Leibniz's_notation

    The derivatives and integrals of calculus can be packaged into the modern theory of differential forms, in which the derivative is genuinely a ratio of two differentials, and the integral likewise behaves in exact accordance with Leibniz notation. However, this requires that derivative and integral first be defined by other means, and as such ...

  9. Differential of a function - Wikipedia

    en.wikipedia.org/wiki/Differential_of_a_function

    e. In calculus, the differential represents the principal part of the change in a function with respect to changes in the independent variable. The differential is defined by where is the derivative of f with respect to , and is an additional real variable (so that is a function of and ). The notation is such that the equation.