Search results
Results From The WOW.Com Content Network
Convergent boundaries are areas where plates move toward each other and collide. These are also known as compressional or destructive boundaries. Obduction zones occurs when the continental plate is pushed under the oceanic plate, but this is unusual as the relative densities of the tectonic plates favours subduction of the oceanic plate. This ...
The continental crust on the downgoing plate is deeply subducted as part of the downgoing plate during collision, defined as buoyant crust entering a subduction zone. An unknown proportion of subducted continental crust returns to the surface as ultra-high pressure (UHP) metamorphic terranes, which contain metamorphic coesite and/or diamond plus or minus unusual silicon-rich garnets and/or ...
A collision zone occurs when tectonic plates meet at a convergent boundary both bearing continental lithosphere.As continental lithosphere is usually not subducted due to its relatively low density, the result is a complex area of orogeny involving folding and thrust faulting as the blocks of continental crust pile up above the subduction zone.
The most significant areas of thrust tectonics are associated with destructive plate boundaries leading to the formation of orogenic belts. The two main types are: the collision of two continental tectonic plates (for example the Arabian plate and Eurasian plate , which formed the Zagros fold and thrust belt ) and collisions between a continent ...
Extensional tectonics is associated with the stretching and thinning of the crust or the lithosphere.This type of tectonics is found at divergent plate boundaries, in continental rifts, during and after a period of continental collision caused by the lateral spreading of the thickened crust formed, at releasing bends in strike-slip faults, in back-arc basins, and on the continental end of ...
Plate tectonics (from Latin tectonicus, from Ancient Greek τεκτονικός (tektonikós) 'pertaining to building') [1] is the scientific theory that the Earth's lithosphere comprises a number of large tectonic plates, which have been slowly moving since 3–4 billion years ago.
Real-world examples differ by the rigidity of the indenter, the size and rheology of both the host and the indenter, and the extent of lateral confinement. [2] The best known active example is the system of strike-slip structures observed in the Eurasian Plate as it responds to collision with the Indian Plate, but similar events can be found all over the Earth.
Orogenic uplift is the result of tectonic-plate collisions and results in mountain ranges or a more modest uplift over a large region. Perhaps the most extreme form of orogenic uplift is a continental-continental crustal collision. In this process, two continents are sutured together, and large mountain ranges are produced.