Search results
Results From The WOW.Com Content Network
Helmholtz free energy ... where ρ cr is the density of the substance at its critical point. ... Methane, CH 4: 230.7069: 0.01855: 0.05587-0.01587:
Methane (US: / ˈ m ɛ θ eɪ n / METH-ayn, UK: / ˈ m iː θ eɪ n / MEE-thayn) is a chemical compound with the chemical formula CH 4 (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas.
The higher the energy density of the fuel, the more energy may be stored or transported for the same amount of volume. The energy of a fuel per unit mass is called its specific energy. The adjacent figure shows the gravimetric and volumetric energy density of some fuels and storage technologies (modified from the Gasoline article).
Therefore, the kinetic energy per kelvin of one mole of monatomic ideal gas (D = 3) is = =, where is the Avogadro constant, and R is the ideal gas constant. Thus, the ratio of the kinetic energy to the absolute temperature of an ideal monatomic gas can be calculated easily:
Energy densities table Storage type Specific energy (MJ/kg) Energy density (MJ/L) Peak recovery efficiency % Practical recovery efficiency % Arbitrary Antimatter: 89,875,517,874: depends on density: Deuterium–tritium fusion: 576,000,000 [1] Uranium-235 fissile isotope: 144,000,000 [1] 1,500,000,000
Drifting smoke particles indicate the movement of the surrounding gas.. Gas is one of the four fundamental states of matter.The others are solid, liquid, and plasma. [1] A pure gas may be made up of individual atoms (e.g. a noble gas like neon), elemental molecules made from one type of atom (e.g. oxygen), or compound molecules made from a variety of atoms (e.g. carbon dioxide).
Methane is responsible for about 30% of the current rise in global temperature, with carbon dioxide to blame for about twice as much, according to the International Energy Agency.
The amount of mass that can be lifted by hydrogen in air per unit volume at sea level, equal to the density difference between hydrogen and air, is: (1.292 - 0.090) kg/m 3 = 1.202 kg/m 3. and the buoyant force for one m 3 of hydrogen in air at sea level is: 1 m 3 × 1.202 kg/m 3 × 9.8 N/kg= 11.8 N