Search results
Results From The WOW.Com Content Network
The flow of energy in an ecosystem is an open system; the Sun constantly gives the planet energy in the form of light while it is eventually used and lost in the form of heat throughout the trophic levels of a food web. Carbon is used to make carbohydrates, fats, and proteins, the major sources of food energy. These compounds are oxidized to ...
Photosynthesis (/ ˌ f oʊ t ə ˈ s ɪ n θ ə s ɪ s / FOH-tə-SINTH-ə-sis) [1] is a system of biological processes by which photosynthetic organisms, such as most plants, algae, and cyanobacteria, convert light energy, typically from sunlight, into the chemical energy necessary to fuel their metabolism.
The strength of the water cycle and its changes over time are of considerable interest, especially as the climate changes. [26] The hydrological cycle is a system whereby the evaporation of moisture in one place leads to precipitation (rain or snow) in another place. For example, evaporation always exceeds precipitation over the oceans.
The fact that a reaction is thermodynamically possible does not mean that it will actually occur. A mixture of hydrogen gas and oxygen gas does not spontaneously ignite. It is necessary either to supply an activation energy or to lower the intrinsic activation energy of the system, in order to make most biochemical reactions proceed at a useful ...
Many cacti conduct photosynthesis in succulent stems, rather than leaves, so the surface area of the shoot is very low. Many desert plants have a special type of photosynthesis, termed crassulacean acid metabolism or CAM photosynthesis, in which the stomata are closed during the day and open at night when transpiration will be lower. [14]
This constant cycle of carbon through the system is not the only element being transferred. In animal and plant respiration these living beings take in glucose and oxygen while emitting energy, carbon dioxide, and water as waste. These constant cycles provide for a influx of oxygen into the system and carbon out of the system.
C4 carbon fixation evolved to circumvent photorespiration, but can occur only in certain plants native to very warm or tropical climates—corn, for example. Furthermore, RuBisCOs catalyzing the light-independent reactions of photosynthesis generally exhibit an improved specificity for CO 2 relative to O 2, in order to minimize the oxygenation ...
(If the electrons were not transferred away after excitation to a high energy state, they would lose energy by fluorescence back to the ground state, which would not allow plants to drive photosynthesis.) The reaction center will drive photosynthesis by taking light and turning it into chemical energy [3] that can then be used by the ...