When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    The definition of e x as the exponential function allows defining b x for every positive real numbers b, in terms of exponential and logarithm function. Specifically, the fact that the natural logarithm ln(x) is the inverse of the exponential function e x means that one has = ⁡ (⁡) = ⁡ for every b > 0.

  3. Inverse function - Wikipedia

    en.wikipedia.org/wiki/Inverse_function

    Sometimes, this multivalued inverse is called the full inverse of f, and the portions (such as √ x and − √ x) are called branches. The most important branch of a multivalued function (e.g. the positive square root) is called the principal branch , and its value at y is called the principal value of f −1 ( y ) .

  4. Exponential function - Wikipedia

    en.wikipedia.org/wiki/Exponential_function

    Exponential functions with bases 2 and 1/2. In mathematics, the exponential function is the unique real function which maps zero to one and has a derivative equal to its value. . The exponential of a variable ⁠ ⁠ is denoted ⁠ ⁡ ⁠ or ⁠ ⁠, with the two notations used interchangeab

  5. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    The inverse of addition is subtraction, and the inverse of multiplication is division. Similarly, a logarithm is the inverse operation of exponentiation. Exponentiation is when a number b, the base, is raised to a certain power y, the exponent, to give a value x; this is denoted =.

  6. Matrix exponential - Wikipedia

    en.wikipedia.org/wiki/Matrix_exponential

    The matrix exponential of another matrix (matrix-matrix exponential), [24] is defined as = ⁡ = ⁡ for any normal and non-singular n×n matrix X, and any complex n×n matrix Y. For matrix-matrix exponentials, there is a distinction between the left exponential Y X and the right exponential X Y , because the multiplication operator for matrix ...

  7. Tetration - Wikipedia

    en.wikipedia.org/wiki/Tetration

    Solving the inverse relation, as in the previous section, yields the expected 0 i = 1 and −1 i = 0, with negative values of n giving infinite results on the imaginary axis. [ citation needed ] Plotted in the complex plane , the entire sequence spirals to the limit 0.4383 + 0.3606 i , which could be interpreted as the value where n is infinite.

  8. Inverse function theorem - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_theorem

    For functions of a single variable, the theorem states that if is a continuously differentiable function with nonzero derivative at the point ; then is injective (or bijective onto the image) in a neighborhood of , the inverse is continuously differentiable near = (), and the derivative of the inverse function at is the reciprocal of the derivative of at : ′ = ′ = ′ (()).

  9. Inverse element - Wikipedia

    en.wikipedia.org/wiki/Inverse_element

    In mathematics, the concept of an inverse element generalises the concepts of opposite (−x) and reciprocal (1/x) of numbers.. Given an operation denoted here ∗, and an identity element denoted e, if x ∗ y = e, one says that x is a left inverse of y, and that y is a right inverse of x.