Search results
Results From The WOW.Com Content Network
Boiling point (°C) K b (°C⋅kg/mol) Freezing point (°C) K f (°C⋅kg/mol) Data source; Aniline: 184.3 3.69 –5.96 –5.87 ... Water: 100.00 0.512 0.00 –1.86
This page contains tables of azeotrope data for various binary and ternary mixtures of solvents. The data include the composition of a mixture by weight (in binary azeotropes, when only one fraction is given, it is the fraction of the second component), the boiling point (b.p.) of a component, the boiling point of a mixture, and the specific gravity of the mixture.
This is a list of the various reported boiling points for the elements, with recommended values to be used elsewhere on Wikipedia. For broader coverage of this topic, see Boiling point . Boiling points, Master List format
Water boiling at 99.3 °C (210.8 °F) at 215 m (705 ft) elevation. The boiling point of a substance is the temperature at which the vapor pressure of a liquid equals the pressure surrounding the liquid [1] [2] and the liquid changes into a vapor. The boiling point of a liquid varies depending upon the surrounding environmental pressure.
Triple points mark conditions at which three different phases can coexist. For example, the water phase diagram has a triple point corresponding to the single temperature and pressure at which solid, liquid, and gaseous water can coexist in a stable equilibrium (273.16 K and a partial vapor pressure of 611.657 Pa).
Therefore, neopentane is a gas at room temperature and atmospheric pressure, while the other two isomers are (barely) liquids. The melting point of neopentane (−16.6 °C), on the other hand, is 140 degrees higher than that of isopentane (−159.9 °C) and 110 degrees higher than that of n-pentane (−129.8 °C). This anomaly has been ...
For temperature range: 173.15 K to 273.15 K or equivalently −100 °C to 0 °C At triple point. An important basic value, which is not registered in the table, is the saturated vapor pressure at the triple point of water. The internationally accepted value according to measurements of Guildner, Johnson and Jones (1976) amounts to:
Dimethylaminopropylamine (DMAPA) is a diamine used in the preparation of some surfactants, such as cocamidopropyl betaine which is an ingredient in many personal care products including soaps, shampoos, and cosmetics.