When.com Web Search

  1. Ad

    related to: diatomic molecular geometry calculator with steps and answers pdf printable

Search results

  1. Results From The WOW.Com Content Network
  2. Walsh diagram - Wikipedia

    en.wikipedia.org/wiki/Walsh_diagram

    Walsh diagrams, often called angular coordinate diagrams or correlation diagrams, are representations of calculated orbital binding energies of a molecule versus a distortion coordinate (bond angles), used for making quick predictions about the geometries of small molecules. [1][2] By plotting the change in molecular orbital levels of a ...

  3. Diatomic molecule - Wikipedia

    en.wikipedia.org/wiki/Diatomic_molecule

    The molecular term symbol is a shorthand expression of the angular momenta that characterize the electronic quantum states of a diatomic molecule, which are also eigenstates of the electronic molecular Hamiltonian. It is also convenient, and common, to represent a diatomic molecule as two-point masses connected by a massless spring.

  4. Symmetry of diatomic molecules - Wikipedia

    en.wikipedia.org/wiki/Symmetry_of_diatomic_molecules

    Molecular symmetry in physics and chemistry describes the symmetry present in molecules and the classification of molecules according to their symmetry. Molecular symmetry is a fundamental concept in the application of Quantum Mechanics in physics and chemistry, for example it can be used to predict or explain many of a molecule's properties, such as its dipole moment and its allowed ...

  5. Molecular orbital diagram - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_diagram

    A diatomic molecular orbital diagram is used to understand the bonding of a diatomic molecule. MO diagrams can be used to deduce magnetic properties of a molecule and how they change with ionization. They also give insight to the bond order of the molecule, how many bonds are shared between the two atoms. [12]

  6. VSEPR theory - Wikipedia

    en.wikipedia.org/wiki/VSEPR_theory

    The bond angle for water is 104.5°. Valence shell electron pair repulsion (VSEPR) theory (/ ˈvɛspər, vəˈsɛpər / VESP-ər, [1]: 410 və-SEP-ər[2]) is a model used in chemistry to predict the geometry of individual molecules from the number of electron pairs surrounding their central atoms. [3] It is also named the Gillespie-Nyholm ...

  7. Morse potential - Wikipedia

    en.wikipedia.org/wiki/Morse_potential

    The Morse potential, named after physicist Philip M. Morse, is a convenient interatomic interaction model for the potential energy of a diatomic molecule.It is a better approximation for the vibrational structure of the molecule than the quantum harmonic oscillator because it explicitly includes the effects of bond breaking, such as the existence of unbound states.

  8. Molecular configuration - Wikipedia

    en.wikipedia.org/wiki/Molecular_configuration

    Molecular configuration. The molecular configuration of a molecule is the permanent geometry that results from the spatial arrangement of its bonds. [1] The ability of the same set of atoms to form two or more molecules with different configurations is stereoisomerism. This is distinct from constitutional isomerism which arises from atoms being ...

  9. Bent's rule - Wikipedia

    en.wikipedia.org/wiki/Bent's_rule

    Both these studies show how Bent's rule can be used to aid synthetic chemistry. Knowing how molecular geometry accurately due to Bent's rule allows synthetic chemists to predict relative product stability. [14] [30] Additionally, Bent's rule can help chemists choose their starting materials to drive the reaction towards a particular product. [14]