Search results
Results From The WOW.Com Content Network
The vertex-connectivity statement of Menger's theorem is as follows: . Let G be a finite undirected graph and x and y two nonadjacent vertices. Then the size of the minimum vertex cut for x and y (the minimum number of vertices, distinct from x and y, whose removal disconnects x and y) is equal to the maximum number of pairwise internally disjoint paths from x to y.
The edge connectivity of is the maximum value k such that G is k-edge-connected. The smallest set X whose removal disconnects G is a minimum cut in G . The edge connectivity version of Menger's theorem provides an alternative and equivalent characterization, in terms of edge-disjoint paths in the graph.
The vertex-connectivity of an input graph G can be computed in polynomial time in the following way [4] consider all possible pairs (,) of nonadjacent nodes to disconnect, using Menger's theorem to justify that the minimal-size separator for (,) is the number of pairwise vertex-independent paths between them, encode the input by doubling each vertex as an edge to reduce to a computation of the ...
In the undirected edge-disjoint paths problem, we are given an undirected graph G = (V, E) and two vertices s and t, and we have to find the maximum number of edge-disjoint s-t paths in G. Menger's theorem states that the maximum number of edge-disjoint s-t paths in an undirected graph is equal to the minimum number of edges in an s-t cut-set.
Karl Menger was a young geometry professor at the University of Vienna and Arthur Cayley was a British mathematician who specialized in algebraic geometry. Menger extended Cayley's algebraic results to propose a new axiom of metric spaces using the concepts of distance geometry up to congruence equivalence, known as the Cayley–Menger determinant.
A cut (,) in an undirected graph = (,) is a partition of the vertices into two non-empty, disjoint sets =.The cutset of a cut consists of the edges {:,} between the two parts. . The size (or weight) of a cut in an unweighted graph is the cardinality of the cutset, i.e., the number of edges between the two parts
Menger conjectured that in ZFC every Menger metric space is σ-compact. A. W. Miller and D. H. Fremlin [3] proved that Menger's conjecture is false, by showing that there is, in ZFC, a set of real numbers that is Menger but not σ-compact. The Fremlin-Miller proof was dichotomic, and the set witnessing the failure of the conjecture heavily ...
An example of a bipartite graph, with a maximum matching (blue) and minimum vertex cover (red) both of size six. In the mathematical area of graph theory, Kőnig's theorem, proved by Dénes Kőnig (), describes an equivalence between the maximum matching problem and the minimum vertex cover problem in bipartite graphs.